国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

服務(wù)器之家:專注于服務(wù)器技術(shù)及軟件下載分享
分類導(dǎo)航

node.js|vue.js|jquery|angularjs|React|json|js教程|

服務(wù)器之家 - 編程語言 - JavaScript - JavaScript中九種常用排序算法

JavaScript中九種常用排序算法

2021-03-03 16:56JavaScript教程網(wǎng) JavaScript

筆試面試經(jīng)常涉及各種算法,本文簡要介紹JavaScript中九種常用排序算法,并用JavaScript實(shí)現(xiàn)。

  筆試面試經(jīng)常涉及各種算法,本文簡要介紹常用的一些算法,并用JavaScript實(shí)現(xiàn)。

一、插入排序

 1)算法簡介

  插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構(gòu)建有序序列,對(duì)于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。插入排序在實(shí)現(xiàn)上,通常采用in-place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過程中,需要反復(fù)把已排序元素逐步向后挪位,為最新元素提供插入空間。

2)算法描述和實(shí)現(xiàn) 

  一般來說,插入排序都采用in-place在數(shù)組上實(shí)現(xiàn)。具體算法描述如下:

從第一個(gè)元素開始,該元素可以認(rèn)為已經(jīng)被排序;
取出下一個(gè)元素,在已經(jīng)排序的元素序列中從后向前掃描;
如果該元素(已排序)大于新元素,將該元素移到下一位置;
重復(fù)步驟3,直到找到已排序的元素小于或者等于新元素的位置;
將新元素插入到該位置后;
重復(fù)步驟2~5。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function insertionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     for (var i = 1; i < array.length; i++) {
       var key = array[i];
       var j = i - 1;
       while (j >= 0 && array[j] > key) {
         array[j + 1] = array[j];
         j--;
       }
      array[j + 1] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情況:輸入數(shù)組按升序排列。T(n) = O(n)
最壞情況:輸入數(shù)組按降序排列。T(n) = O(n2)
平均情況:T(n) = O(n2)

二、二分插入排序

1)算法簡介

  二分插入(Binary-insert-sort)排序是一種在直接插入排序算法上進(jìn)行小改動(dòng)的排序算法。其與直接插入排序算法最大的區(qū)別在于查找插入位置時(shí)使用的是二分查找的方式,在速度上有一定提升。

2)算法描述和實(shí)現(xiàn)  

  一般來說,插入排序都采用in-place在數(shù)組上實(shí)現(xiàn)。具體算法描述如下:

從第一個(gè)元素開始,該元素可以認(rèn)為已經(jīng)被排序;
取出下一個(gè)元素,在已經(jīng)排序的元素序列中二分查找到第一個(gè)比它大的數(shù)的位置;
將新元素插入到該位置后;
重復(fù)上述兩步。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function binaryInsertionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     for (var i = 1; i < array.length; i++) {
       var key = array[i], left = 0, right = i - 1;
       while (left <= right) {
         var middle = parseInt((left + right) / 2);
         if (key < array[middle]) {
           right = middle - 1;
         } else {
          left = middle + 1;
        }
      }
      for (var j = i - 1; j >= left; j--) {
        array[j + 1] = array[j];
      }
      array[left] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)

三、選擇排序

1)算法簡介

  選擇排序(Selection-sort)是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續(xù)尋找最小(大)元素,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。

2)算法描述和實(shí)現(xiàn)

  n個(gè)記錄的直接選擇排序可經(jīng)過n-1趟直接選擇排序得到有序結(jié)果。具體算法描述如下:

初始狀態(tài):無序區(qū)為R[1..n],有序區(qū)為空;
第i趟排序(i=1,2,3...n-1)開始時(shí),當(dāng)前有序區(qū)和無序區(qū)分別為R[1..i-1]和R(i..n)。該趟排序從當(dāng)前無序區(qū)中選出關(guān)鍵字最小的記錄 R[k],將它與無序區(qū)的第1個(gè)記錄R交換,使R[1..i]和R[i+1..n)分別變?yōu)橛涗泜€(gè)數(shù)增加1個(gè)的新有序區(qū)和記錄個(gè)數(shù)減少1個(gè)的新無序區(qū);
n-1趟結(jié)束,數(shù)組有序化了。

JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
function selectionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     var len = array.length, temp;
     for (var i = 0; i < len - 1; i++) {
       var min = array[i];
       for (var j = i + 1; j < len; j++) {
         if (array[j] < min) {
           temp = min;
           min = array[j];
          array[j] = temp;
        }
      }
      array[i] = min;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情況:T(n) = O(n2)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)

四、冒泡排序

1)算法簡介

  冒泡排序是一種簡單的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果它們的順序錯(cuò)誤就把它們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個(gè)算法的名字由來是因?yàn)樵叫〉脑貢?huì)經(jīng)由交換慢慢“浮”到數(shù)列的頂端。

2)算法描述和實(shí)現(xiàn)

  具體算法描述如下:

比較相鄰的元素。如果第一個(gè)比第二個(gè)大,就交換它們兩個(gè);
對(duì)每一對(duì)相鄰元素作同樣的工作,從開始第一對(duì)到結(jié)尾的最后一對(duì),這樣在最后的元素應(yīng)該會(huì)是最大的數(shù);
針對(duì)所有的元素重復(fù)以上的步驟,除了最后一個(gè);
重復(fù)步驟1~3,直到排序完成。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function bubbleSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
    var len = array.length, temp;
    for (var i = 0; i < len - 1; i++) {
      for (var j = len - 1; j >= i; j--) {
        if (array[j] < array[j - 1]) {
          temp = array[j];
          array[j] = array[j - 1];
          array[j - 1] = temp;
        }
      }
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情況:T(n) = O(n)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)

五、快速排序

1)算法簡介

  快速排序的基本思想:通過一趟排序?qū)⒋庞涗浄指舫瑟?dú)立的兩部分,其中一部分記錄的關(guān)鍵字均比另一部分的關(guān)鍵字小,則可分別對(duì)這兩部分記錄繼續(xù)進(jìn)行排序,以達(dá)到整個(gè)序列有序。

2)算法描述和實(shí)現(xiàn)

  快速排序使用分治法來把一個(gè)串(list)分為兩個(gè)子串(sub-lists)。具體算法描述如下:

從數(shù)列中挑出一個(gè)元素,稱為 "基準(zhǔn)"(pivot);
重新排序數(shù)列,所有元素比基準(zhǔn)值小的擺放在基準(zhǔn)前面,所有元素比基準(zhǔn)值大的擺在基準(zhǔn)的后面(相同的數(shù)可以到任一邊)。在這個(gè)分區(qū)退出之后,該基準(zhǔn)就處于數(shù)列的中間位置。這個(gè)稱為分區(qū)(partition)操作;
遞歸地(recursive)把小于基準(zhǔn)值元素的子數(shù)列和大于基準(zhǔn)值元素的子數(shù)列排序。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
//方法一
function quickSort(array, left, right) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {
    if (left < right) {
      var x = array[right], i = left - 1, temp;
      for (var j = left; j <= right; j++) {
        if (array[j] <= x) {
          i++;
          temp = array[i];
          array[i] = array[j];
          array[j] = temp;
        }
      }
      quickSort(array, left, i - 1);
      quickSort(array, i + 1, right);
    };
  } else {
    return 'array is not an Array or left or right is not a number!';
  }
}
var aaa = [3, 5, 2, 9, 1];
quickSort(aaa, 0, aaa.length - 1);
console.log(aaa);
 
//方法二
var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];
  var left = [];
  var right = [];
  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

3)算法分析

最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(nlogn)

六、堆排序

1)算法簡介

  堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。

2)算法描述和實(shí)現(xiàn)

  具體算法描述如下:

將初始待排序關(guān)鍵字序列(R1,R2....Rn)構(gòu)建成大頂堆,此堆為初始的無序區(qū);
將堆頂元素R[1]與最后一個(gè)元素R[n]交換,此時(shí)得到新的無序區(qū)(R1,R2,......Rn-1)和新的有序區(qū)(Rn),且滿足R[1,2...n-1]<=R[n];
由于交換后新的堆頂R[1]可能違反堆的性質(zhì),因此需要對(duì)當(dāng)前無序區(qū)(R1,R2,......Rn-1)調(diào)整為新堆,然后再次將R[1]與無序區(qū)最后一個(gè)元素交換,得到新的無序區(qū)(R1,R2....Rn-2)和新的有序區(qū)(Rn-1,Rn)。不斷重復(fù)此過程直到有序區(qū)的元素個(gè)數(shù)為n-1,則整個(gè)排序過程完成。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*方法說明:堆排序
 @param array 待排序數(shù)組*/     
 function heapSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     //建堆
     var heapSize = array.length, temp;
     for (var i = Math.floor(heapSize / 2); i >= 0; i--) {
       heapify(array, i, heapSize);
     }
    
    //堆排序
    for (var j = heapSize - 1; j >= 1; j--) {
      temp = array[0];
      array[0] = array[j];
      array[j] = temp;
      heapify(array, 0, --heapSize);
    }
  } else {
    return 'array is not an Array!';
  }
}
/*方法說明:維護(hù)堆的性質(zhì)
@param arr 數(shù)組
@param x  數(shù)組下標(biāo)
@param len 堆大小*/
function heapify(arr, x, len) {
  if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {
    var l = 2 * x, r = 2 * x + 1, largest = x, temp;
    if (l < len && arr[l] > arr[largest]) {
      largest = l;
    }
    if (r < len && arr[r] > arr[largest]) {
      largest = r;
    }
    if (largest != x) {
      temp = arr[x];
      arr[x] = arr[largest];
      arr[largest] = temp;
      heapify(arr, largest, len);
    }
  } else {
    return 'arr is not an Array or x is not a number!';
  }
}

3)算法分析

最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(nlogn)
平均情況:T(n) = O(nlogn)

七、歸并排序

1)算法簡介

  歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。歸并排序是一種穩(wěn)定的排序方法。將已有序的子序列合并,得到完全有序的序列;即先使每個(gè)子序列有序,再使子序列段間有序。若將兩個(gè)有序表合并成一個(gè)有序表,稱為2-路歸并。

2)算法描述和實(shí)現(xiàn)

  具體算法描述如下:

把長度為n的輸入序列分成兩個(gè)長度為n/2的子序列;
對(duì)這兩個(gè)子序列分別采用歸并排序;
將兩個(gè)排序好的子序列合并成一個(gè)最終的排序序列。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function mergeSort(array, p, r) {
   if (p < r) {
     var q = Math.floor((p + r) / 2);
     mergeSort(array, p, q);
     mergeSort(array, q + 1, r);
     merge(array, p, q, r);
   }
 }
 function merge(array, p, q, r) {
  var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0;
  for (var i = 0; i < n1; i++) {
    left[i] = array[p + i];
  }
  for (var j = 0; j < n2; j++) {
    right[j] = array[q + 1 + j];
  }
  left[n1] = right[n2] = Number.MAX_VALUE;
  for (var k = p; k <= r; k++) {
    if (left[m] <= right[n]) {
      array[k] = left[m];
      m++;
    } else {
      array[k] = right[n];
      n++;
    }
  }
}

3)算法分析

最佳情況:T(n) = O(n)
最差情況:T(n) = O(nlogn)
平均情況:T(n) = O(nlogn)

八、桶排序

1)算法簡介

  桶排序 (Bucket sort)的工作的原理:假設(shè)輸入數(shù)據(jù)服從均勻分布,將數(shù)據(jù)分到有限數(shù)量的桶里,每個(gè)桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續(xù)使用桶排序進(jìn)行排序)。

2)算法描述和實(shí)現(xiàn)

  具體算法描述如下:

設(shè)置一個(gè)定量的數(shù)組當(dāng)作空桶;
遍歷輸入數(shù)據(jù),并且把數(shù)據(jù)一個(gè)一個(gè)放到對(duì)應(yīng)的桶里去;
對(duì)每個(gè)不是空的桶進(jìn)行排序;
從不是空的桶里把排好序的數(shù)據(jù)拼接起來。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/*方法說明:桶排序
@param array 數(shù)組
@param num  桶的數(shù)量*/
function bucketSort(array, num) {
  if (array.length <= 1) {
    return array;
  }
  var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;
  num = num || ((num > 1 && regex.test(num)) ? num : 10);
  for (var i = 1; i < len; i++) {
    min = min <= array[i] ? min : array[i];
    max = max >= array[i] ? max : array[i];
  }
  space = (max - min + 1) / num;
  for (var j = 0; j < len; j++) {
    var index = Math.floor((array[j] - min) / space);
    if (buckets[index]) {  // 非空桶,插入排序
      var k = buckets[index].length - 1;
      while (k >= 0 && buckets[index][k] > array[j]) {
        buckets[index][k + 1] = buckets[index][k];
        k--;
      }
      buckets[index][k + 1] = array[j];
    } else //空桶,初始化
      buckets[index] = [];
      buckets[index].push(array[j]);
    }
  }
  while (n < num) {
    result = result.concat(buckets[n]);
    n++;
  }
  return result;
}

3)算法分析

  桶排序最好情況下使用線性時(shí)間O(n),桶排序的時(shí)間復(fù)雜度,取決與對(duì)各個(gè)桶之間數(shù)據(jù)進(jìn)行排序的時(shí)間復(fù)雜度,因?yàn)槠渌糠值臅r(shí)間復(fù)雜度都為O(n)。很顯然,桶劃分的越小,各個(gè)桶之間的數(shù)據(jù)越少,排序所用的時(shí)間也會(huì)越少。但相應(yīng)的空間消耗就會(huì)增大。

九、計(jì)數(shù)排序

1)算法簡介

  計(jì)數(shù)排序(Counting sort)是一種穩(wěn)定的排序算法。計(jì)數(shù)排序使用一個(gè)額外的數(shù)組C,其中第i個(gè)元素是待排序數(shù)組A中值等于i的元素的個(gè)數(shù)。然后根據(jù)數(shù)組C來將A中的元素排到正確的位置。它只能對(duì)整數(shù)進(jìn)行排序。

2)算法描述和實(shí)現(xiàn)

  具體算法描述如下:

找出待排序的數(shù)組中最大和最小的元素;
統(tǒng)計(jì)數(shù)組中每個(gè)值為i的元素出現(xiàn)的次數(shù),存入數(shù)組C的第i項(xiàng);
對(duì)所有的計(jì)數(shù)累加(從C中的第一個(gè)元素開始,每一項(xiàng)和前一項(xiàng)相加);
反向填充目標(biāo)數(shù)組:將每個(gè)元素i放在新數(shù)組的第C(i)項(xiàng),每放一個(gè)元素就將C(i)減去1。
  JavaScript代碼實(shí)現(xiàn):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function countingSort(array) {
  var len = array.length, B = [], C = [], min = max = array[0];
  for (var i = 0; i < len; i++) {
    min = min <= array[i] ? min : array[i];
    max = max >= array[i] ? max : array[i];
    C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
  }
  for (var j = min; j < max; j++) {
    C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
  }
  for (var k = len - 1; k >=0; k--) {
    B[C[array[k]] - 1] = array[k];
    C[array[k]]--;
  }
  return B;
}

3)算法分析

  當(dāng)輸入的元素是n 個(gè)0到k之間的整數(shù)時(shí),它的運(yùn)行時(shí)間是 O(n + k)。計(jì)數(shù)排序不是比較排序,排序的速度快于任何比較排序算法。由于用來計(jì)數(shù)的數(shù)組C的長度取決于待排序數(shù)組中數(shù)據(jù)的范圍(等于待排序數(shù)組的最大值與最小值的差加上1),這使得計(jì)數(shù)排序?qū)τ跀?shù)據(jù)范圍很大的數(shù)組,需要大量時(shí)間和內(nèi)存。

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 国产精品精品 | 精品无人区一区二区三区动漫 | 一区免费看 | 亚洲欧美日韩在线 | 日本不卡一区二区三区在线观看 | 视频一区二区国产 | 欧美伊人| 成人综合站 | 国产日韩精品久久 | 国产亚洲精品一区二区 | 偷拍做爰吃奶视频免费看 | 日韩综合区| 免费成人在线观看视频 | 欧美日韩在线免费观看 | 国产成人精品视频 | 337p亚洲欧洲 | 日本在线小视频 | 亚洲成人一二三 | 99久久精品免费看国产一区二区三区 | 中文字幕乱码一区二区三区 | 免播放器看av | 亚洲在线播放 | 欧美在线一区二区 | 中文字幕在线观看 | 夜夜超碰 | 91精品久久久久久 | 操操操操操操操 | 亚洲精品久久久久久久久久久 | 国产黄视频在线观看 | 日韩成人av电影 | 欧美在线视屏 | av在线免费网址 | 亚洲视频欧洲视频 | 成人欧美一区二区三区在线播放 | 久久久精品在线观看 | 日韩中文字幕一区 | 黄片毛片在线观看 | 好吊妞国产欧美日韩免费观看视频 | 日韩av成人在线观看 | 大白屁股一区二区视频 | 国外精品久久久蜜桃免费全文阅读 |