相同的最大間隔(maximum margin)的概念應(yīng)用到線性回歸擬合。代替最大化分割兩類目標(biāo)是,最大化分割包含大部分的數(shù)據(jù)點(diǎn)(x,y)。我們將用相同的iris數(shù)據(jù)集,展示用剛才的概念來進(jìn)行花萼長度與花瓣寬度之間的線性擬合。
相關(guān)的損失函數(shù)類似于max(0,|yi-(Axi+b)|-ε)。ε這里,是間隔寬度的一半,這意味著如果一個(gè)數(shù)據(jù)點(diǎn)在該區(qū)域,則損失等于0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
# SVM Regression #---------------------------------- # # This function shows how to use TensorFlow to # solve support vector regression. We are going # to find the line that has the maximum margin # which INCLUDES as many points as possible # # We will use the iris data, specifically: # y = Sepal Length # x = Pedal Width import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([x[ 3 ] for x in iris.data]) y_vals = np.array([y[ 0 ] for y in iris.data]) # Split data into train/test sets train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False ) test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Declare batch size batch_size = 50 # Initialize placeholders x_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function # = max(0, abs(target - predicted) + epsilon) # 1/2 margin width parameter = epsilon epsilon = tf.constant([ 0.5 ]) # Margin term in loss loss = tf.reduce_mean(tf.maximum( 0. , tf.subtract(tf. abs (tf.subtract(model_output, y_target)), epsilon))) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer( 0.075 ) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop train_loss = [] test_loss = [] for i in range ( 200 ): rand_index = np.random.choice( len (x_vals_train), size = batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_train_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) train_loss.append(temp_train_loss) temp_test_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) test_loss.append(temp_test_loss) if (i + 1 ) % 50 = = 0 : print ( '-----------' ) print ( 'Generation: ' + str (i + 1 )) print ( 'A = ' + str (sess.run(A)) + ' b = ' + str (sess.run(b))) print ( 'Train Loss = ' + str (temp_train_loss)) print ( 'Test Loss = ' + str (temp_test_loss)) # Extract Coefficients [[slope]] = sess.run(A) [[y_intercept]] = sess.run(b) [width] = sess.run(epsilon) # Get best fit line best_fit = [] best_fit_upper = [] best_fit_lower = [] for i in x_vals: best_fit.append(slope * i + y_intercept) best_fit_upper.append(slope * i + y_intercept + width) best_fit_lower.append(slope * i + y_intercept - width) # Plot fit with data plt.plot(x_vals, y_vals, 'o' , label = 'Data Points' ) plt.plot(x_vals, best_fit, 'r-' , label = 'SVM Regression Line' , linewidth = 3 ) plt.plot(x_vals, best_fit_upper, 'r--' , linewidth = 2 ) plt.plot(x_vals, best_fit_lower, 'r--' , linewidth = 2 ) plt.ylim([ 0 , 10 ]) plt.legend(loc = 'lower right' ) plt.title( 'Sepal Length vs Pedal Width' ) plt.xlabel( 'Pedal Width' ) plt.ylabel( 'Sepal Length' ) plt.show() # Plot loss over time plt.plot(train_loss, 'k-' , label = 'Train Set Loss' ) plt.plot(test_loss, 'r--' , label = 'Test Set Loss' ) plt.title( 'L2 Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'L2 Loss' ) plt.legend(loc = 'upper right' ) plt.show() |
輸出結(jié)果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
- - - - - - - - - - - Generation: 50 A = [[ 2.91328382 ]] b = [[ 1.18453276 ]] Train Loss = 1.17104 Test Loss = 1.1143 - - - - - - - - - - - Generation: 100 A = [[ 2.42788291 ]] b = [[ 2.3755331 ]] Train Loss = 0.703519 Test Loss = 0.715295 - - - - - - - - - - - Generation: 150 A = [[ 1.84078252 ]] b = [[ 3.40453291 ]] Train Loss = 0.338596 Test Loss = 0.365562 - - - - - - - - - - - Generation: 200 A = [[ 1.35343242 ]] b = [[ 4.14853334 ]] Train Loss = 0.125198 Test Loss = 0.16121 |
基于iris數(shù)據(jù)集(花萼長度和花瓣寬度)的支持向量機(jī)回歸,間隔寬度為0.5
每次迭代的支持向量機(jī)回歸的損失值(訓(xùn)練集和測試集)
直觀地講,我們認(rèn)為SVM回歸算法試圖把更多的數(shù)據(jù)點(diǎn)擬合到直線兩邊2ε寬度的間隔內(nèi)。這時(shí)擬合的直線對于ε參數(shù)更有意義。如果選擇太小的ε值,SVM回歸算法在間隔寬度內(nèi)不能擬合更多的數(shù)據(jù)點(diǎn);如果選擇太大的ε值,將有許多條直線能夠在間隔寬度內(nèi)擬合所有的數(shù)據(jù)點(diǎn)。作者更傾向于選取更小的ε值,因?yàn)樵陂g隔寬度附近的數(shù)據(jù)點(diǎn)比遠(yuǎn)處的數(shù)據(jù)點(diǎn)貢獻(xiàn)更少的損失。
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持服務(wù)器之家。
原文鏈接:https://blog.csdn.net/lilongsy/article/details/79391059