国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語言編程技術(shù)及教程分享平臺(tái)!
分類導(dǎo)航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務(wù)器之家 - 腳本之家 - Python - Tensorflow使用支持向量機(jī)擬合線性回歸

Tensorflow使用支持向量機(jī)擬合線性回歸

2021-04-01 00:16lilongsy Python

這篇文章主要為大家詳細(xì)介紹了Tensorflow使用支持向量機(jī)擬合線性回歸,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

支持向量機(jī)可以用來擬合線性回歸

相同的最大間隔(maximum margin)的概念應(yīng)用到線性回歸擬合。代替最大化分割兩類目標(biāo)是,最大化分割包含大部分的數(shù)據(jù)點(diǎn)(x,y)。我們將用相同的iris數(shù)據(jù)集,展示用剛才的概念來進(jìn)行花萼長度與花瓣寬度之間的線性擬合。

相關(guān)的損失函數(shù)類似于max(0,|yi-(Axi+b)|-ε)。ε這里,是間隔寬度的一半,這意味著如果一個(gè)數(shù)據(jù)點(diǎn)在該區(qū)域,則損失等于0。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# SVM Regression
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve support vector regression. We are going
# to find the line that has the maximum margin
# which INCLUDES as many points as possible
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Pedal Width
 
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
 
# Create graph
sess = tf.Session()
 
# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
 
# Split data into train/test sets
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
 
# Declare batch size
batch_size = 50
 
# Initialize placeholders
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
 
# Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
 
# Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b)
 
# Declare loss function
# = max(0, abs(target - predicted) + epsilon)
# 1/2 margin width parameter = epsilon
epsilon = tf.constant([0.5])
# Margin term in loss
loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon)))
 
# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.075)
train_step = my_opt.minimize(loss)
 
# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)
 
# Training loop
train_loss = []
test_loss = []
for i in range(200):
  rand_index = np.random.choice(len(x_vals_train), size=batch_size)
  rand_x = np.transpose([x_vals_train[rand_index]])
  rand_y = np.transpose([y_vals_train[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
 
  temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
  train_loss.append(temp_train_loss)
 
  temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
  test_loss.append(temp_test_loss)
  if (i+1)%50==0:
    print('-----------')
    print('Generation: ' + str(i+1))
    print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
    print('Train Loss = ' + str(temp_train_loss))
    print('Test Loss = ' + str(temp_test_loss))
 
# Extract Coefficients
[[slope]] = sess.run(A)
[[y_intercept]] = sess.run(b)
[width] = sess.run(epsilon)
 
# Get best fit line
best_fit = []
best_fit_upper = []
best_fit_lower = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)
 best_fit_upper.append(slope*i+y_intercept+width)
 best_fit_lower.append(slope*i+y_intercept-width)
 
# Plot fit with data
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3)
plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)
plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()
 
# Plot loss over time
plt.plot(train_loss, 'k-', label='Train Set Loss')
plt.plot(test_loss, 'r--', label='Test Set Loss')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.legend(loc='upper right')
plt.show()

輸出結(jié)果:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
-----------
Generation: 50
A = [[ 2.91328382]] b = [[ 1.18453276]]
Train Loss = 1.17104
Test Loss = 1.1143
-----------
Generation: 100
A = [[ 2.42788291]] b = [[ 2.3755331]]
Train Loss = 0.703519
Test Loss = 0.715295
-----------
Generation: 150
A = [[ 1.84078252]] b = [[ 3.40453291]]
Train Loss = 0.338596
Test Loss = 0.365562
-----------
Generation: 200
A = [[ 1.35343242]] b = [[ 4.14853334]]
Train Loss = 0.125198
Test Loss = 0.16121

 

Tensorflow使用支持向量機(jī)擬合線性回歸

基于iris數(shù)據(jù)集(花萼長度和花瓣寬度)的支持向量機(jī)回歸,間隔寬度為0.5

Tensorflow使用支持向量機(jī)擬合線性回歸

每次迭代的支持向量機(jī)回歸的損失值(訓(xùn)練集和測試集)

直觀地講,我們認(rèn)為SVM回歸算法試圖把更多的數(shù)據(jù)點(diǎn)擬合到直線兩邊2ε寬度的間隔內(nèi)。這時(shí)擬合的直線對于ε參數(shù)更有意義。如果選擇太小的ε值,SVM回歸算法在間隔寬度內(nèi)不能擬合更多的數(shù)據(jù)點(diǎn);如果選擇太大的ε值,將有許多條直線能夠在間隔寬度內(nèi)擬合所有的數(shù)據(jù)點(diǎn)。作者更傾向于選取更小的ε值,因?yàn)樵陂g隔寬度附近的數(shù)據(jù)點(diǎn)比遠(yuǎn)處的數(shù)據(jù)點(diǎn)貢獻(xiàn)更少的損失。

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持服務(wù)器之家。

原文鏈接:https://blog.csdn.net/lilongsy/article/details/79391059

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 在线观看国产视频 | 一区二区国产视频 | 曰本人一级毛片免费完整视频 | 亚洲www视频 | 成人免费视频在线观看 | а_天堂中文最新版地址 | 夜夜嗨aⅴ免费视频 | 欧美二区三区 | 鲁一鲁综合 | 激情婷婷丁香 | 中文字幕国产一区 | 狠狠av| 老女肥熟av免费观看 | 久久久久久亚洲精品 | 欧美日韩国产一区二区三区 | 欧美日韩中文字幕 | 狠狠天天| 成人高清av | 日本一区二区三区在线视频 | 看亚洲a级一级毛片 | 一级二级黄色大片 | 综合久久久 | 亚洲欧美综合精品久久成人 | 亚洲一区二区在线 | 中文字幕高清在线 | 福利片在线观看 | 亚洲二区在线观看 | 亚洲一区二区三区在线视频 | 99免费视频| 欧美视频精品 | 色综合天天综合网国产成人综合天 | 国产日韩一区二区三区 | 99爱在线观看 | 欧洲精品久久久 | 亚洲一区二区三 | 国产a区| 羞羞视频免费观看 | av在线免费观看网址 | 4虎tv | 激情图区在线观看 | 亚洲天天干|