国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語(yǔ)言編程技術(shù)及教程分享平臺(tái)!
分類導(dǎo)航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務(wù)器之家 - 腳本之家 - Python - 淺談pytorch中torch.max和F.softmax函數(shù)的維度解釋

淺談pytorch中torch.max和F.softmax函數(shù)的維度解釋

2020-06-28 11:11Jasminexjf Python

這篇文章主要介紹了淺談pytorch中torch.max和F.softmax函數(shù)的維度解釋,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧

在利用torch.max函數(shù)和F.Ssoftmax函數(shù)時(shí),對(duì)應(yīng)該設(shè)置什么維度,總是有點(diǎn)懵,遂總結(jié)一下:

首先看看二維tensor的函數(shù)的例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import torch.nn.functional as F
 
input = torch.randn(3,4)
print(input)
tensor([[-0.5526, -0.0194, 2.1469, -0.2567],
    [-0.3337, -0.9229, 0.0376, -0.0801],
    [ 1.4721, 0.1181, -2.6214, 1.7721]])
 
b = F.softmax(input,dim=0) # 按列SoftMax,列和為1
print(b)
tensor([[0.1018, 0.3918, 0.8851, 0.1021],
    [0.1268, 0.1587, 0.1074, 0.1218],
    [0.7714, 0.4495, 0.0075, 0.7762]])
 
c = F.softmax(input,dim=1# 按行SoftMax,行和為1
print(c)
tensor([[0.0529, 0.0901, 0.7860, 0.0710],
    [0.2329, 0.1292, 0.3377, 0.3002],
    [0.3810, 0.0984, 0.0064, 0.5143]])
 
d = torch.max(input,dim=0# 按列取max,
print(d)
torch.return_types.max(
values=tensor([1.4721, 0.1181, 2.1469, 1.7721]),
indices=tensor([2, 2, 0, 2]))
 
e = torch.max(input,dim=1# 按行取max,
print(e)
torch.return_types.max(
values=tensor([2.1469, 0.0376, 1.7721]),
indices=tensor([2, 2, 3]))

下面看看三維tensor解釋例子:

函數(shù)softmax輸出的是所給矩陣的概率分布;

b輸出的是在dim=0維上的概率分布,b[0][5][6]+b[1][5][6]+b[2][5][6]=1

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
a=torch.rand(3,16,20)
b=F.softmax(a,dim=0)
c=F.softmax(a,dim=1)
d=F.softmax(a,dim=2)
 
In [1]: import torch as t
In [2]: import torch.nn.functional as F
In [4]: a=t.Tensor(3,4,5)
In [5]: b=F.softmax(a,dim=0)
In [6]: c=F.softmax(a,dim=1)
In [7]: d=F.softmax(a,dim=2)
 
In [8]: a
Out[8]:
tensor([[[-0.1581, 0.0000, 0.0000, 0.0000, -0.0344],
 
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]]])
 
In [9]: b
Out[9]:
 
tensor([[[0.3064, 0.3333, 0.3410, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]]])
 
 
In [10]: b.sum()
Out[10]: tensor(20.0000)
 
In [11]: b[0][0][0]+b[1][0][0]+b[2][0][0]
Out[11]: tensor(1.0000)
 
In [12]: c.sum()
Out[12]: tensor(15.)
 
In [13]: c
Out[13]:
tensor([[[0.2235, 0.2543, 0.2521, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543],
 
     [0.2529, 0.2543, 0.2436, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]]])
 
In [14]: n=t.rand(3,4)
 
In [15]: n
Out[15]:
 
tensor([[0.2769, 0.3475, 0.8914, 0.6845],
    [0.9251, 0.3976, 0.8690, 0.4510],
    [0.8249, 0.1157, 0.3075, 0.3799]])
 
In [16]: m=t.argmax(n,dim=0)
 
In [17]: m
Out[17]: tensor([1, 1, 0, 0])
 
In [18]: p=t.argmax(n,dim=1)
 
In [19]: p
Out[19]: tensor([2, 0, 0])
 
In [20]: d.sum()
Out[20]: tensor(12.0000)
 
In [22]: d
Out[22]:
 
tensor([[[0.1771, 0.2075, 0.2075, 0.2075, 0.2005],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]]])
 
In [23]: d[0][0].sum()
Out[23]: tensor(1.)

補(bǔ)充知識(shí):多分類問題torch.nn.Softmax的使用

為什么談?wù)撨@個(gè)問題呢?是因?yàn)槲以诠ぷ鞯倪^程中遇到了語(yǔ)義分割預(yù)測(cè)輸出特征圖個(gè)數(shù)為16,也就是所謂的16分類問題。

因?yàn)槊總€(gè)通道的像素的值的大小代表了像素屬于該通道的類的大小,為了在一張圖上用不同的顏色顯示出來(lái),我不得不學(xué)習(xí)了torch.nn.Softmax的使用。

首先看一個(gè)簡(jiǎn)答的例子,倘若輸出為(3, 4, 4),也就是3張4x4的特征圖。

?
1
2
3
import torch
img = torch.rand((3,4,4))
print(img)

輸出為:

?
1
2
3
4
5
6
7
8
9
10
11
12
tensor([[[0.0413, 0.8728, 0.8926, 0.0693],
     [0.4072, 0.0302, 0.9248, 0.6676],
     [0.4699, 0.9197, 0.3333, 0.4809],
     [0.3877, 0.7673, 0.6132, 0.5203]],
    [[0.4940, 0.7996, 0.5513, 0.8016],
     [0.1157, 0.8323, 0.9944, 0.2127],
     [0.3055, 0.4343, 0.8123, 0.3184],
     [0.8246, 0.6731, 0.3229, 0.1730]],
    [[0.0661, 0.1905, 0.4490, 0.7484],
     [0.4013, 0.1468, 0.2145, 0.8838],
     [0.0083, 0.5029, 0.0141, 0.8998],
     [0.8673, 0.2308, 0.8808, 0.0532]]])

我們可以看到共三張?zhí)卣鲌D,每張?zhí)卣鲌D上對(duì)應(yīng)的值越大,說明屬于該特征圖對(duì)應(yīng)類的概率越大。

?
1
2
3
4
import torch.nn as nn
sogtmax = nn.Softmax(dim=0)
img = sogtmax(img)
print(img)

輸出為:

?
1
2
3
4
5
6
7
8
9
10
11
12
tensor([[[0.2780, 0.4107, 0.4251, 0.1979],
     [0.3648, 0.2297, 0.3901, 0.3477],
     [0.4035, 0.4396, 0.2993, 0.2967],
     [0.2402, 0.4008, 0.3273, 0.4285]],
    [[0.4371, 0.3817, 0.3022, 0.4117],
     [0.2726, 0.5122, 0.4182, 0.2206],
     [0.3423, 0.2706, 0.4832, 0.2522],
     [0.3718, 0.3648, 0.2449, 0.3028]],
    [[0.2849, 0.2076, 0.2728, 0.3904],
     [0.3627, 0.2581, 0.1917, 0.4317],
     [0.2543, 0.2898, 0.2175, 0.4511],
     [0.3880, 0.2344, 0.4278, 0.2686]]])

可以看到,上面的代碼對(duì)每張?zhí)卣鲌D對(duì)應(yīng)位置的像素值進(jìn)行Softmax函數(shù)處理, 圖中標(biāo)紅位置加和=1,同理,標(biāo)藍(lán)位置加和=1。

我們看到Softmax函數(shù)會(huì)對(duì)原特征圖每個(gè)像素的值在對(duì)應(yīng)維度(這里dim=0,也就是第一維)上進(jìn)行計(jì)算,將其處理到0~1之間,并且大小固定不變。

print(torch.max(img,0))

輸出為:

?
1
2
3
4
5
6
7
8
9
torch.return_types.max(
values=tensor([[0.4371, 0.4107, 0.4251, 0.4117],
    [0.3648, 0.5122, 0.4182, 0.4317],
    [0.4035, 0.4396, 0.4832, 0.4511],
    [0.3880, 0.4008, 0.4278, 0.4285]]),
indices=tensor([[1, 0, 0, 1],
    [0, 1, 1, 2],
    [0, 0, 1, 2],
    [2, 0, 2, 0]]))

可以看到這里3x4x4變成了1x4x4,而且對(duì)應(yīng)位置上的值為像素對(duì)應(yīng)每個(gè)通道上的最大值,并且indices是對(duì)應(yīng)的分類。

清楚理解了上面的流程,那么我們就容易處理了。

看具體案例,這里輸出output的大小為:16x416x416.

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
output = torch.tensor(output)
 
sm = nn.Softmax(dim=0)
output = sm(output)
 
mask = torch.max(output,0).indices.numpy()
 
# 因?yàn)橐D(zhuǎn)化為RGB彩色圖,所以增加一維
rgb_img = np.zeros((output.shape[1], output.shape[2], 3))
for i in range(len(mask)):
  for j in range(len(mask[0])):
    if mask[i][j] == 0:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 1:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 0
    if mask[i][j] == 2:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 180
    if mask[i][j] == 3:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 4:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 5:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 0
    if mask[i][j] == 6:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 7:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 8:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 9:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 10:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 11:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 12:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 13:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 14:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 15:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
 
cv2.imwrite('output.jpg', rgb_img)

最后保存得到的圖為:

淺談pytorch中torch.max和F.softmax函數(shù)的維度解釋

以上這篇淺談pytorch中torch.max和F.softmax函數(shù)的維度解釋就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持服務(wù)器之家。

原文鏈接:https://blog.csdn.net/Jasminexjf/article/details/90402990

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 成人午夜网站 | 骚片网站| 国产精品一二三区 | 日韩不卡二区 | 精品www | 日韩一级片 | 国产精品不卡视频 | 久久中文字幕一区 | 日本精品一区二区三区视频 | 国产亚洲精品美女久久久久久久久久 | 亚洲精品日本 | 精品国产欧美一区二区三区成人 | 中文字幕精品一区 | 午夜视频在线免费观看 | 中文字幕久久久 | 国产高潮久久 | 亚洲久久久久 | 91欧美激情一区二区三区成人 | 亚洲狠狠爱一区二区三区 | 中文字幕日韩一区 | 中国性bbwbbwbbwbbw | 欧美亚洲国产日韩 | 亚洲免费视频观看 | 成年黄色在线观看 | 国产福利91精品一区二区 | 成年人在线观看视频 | 免费的污网站 | 亚洲一区免费观看 | 久久久91精品国产一区二区三区 | 91欧美激情一区二区三区成人 | 综合色九九 | 久久99精品久久久久久噜噜 | 午夜视频免费在线观看 | 国产亚洲精品一区二区 | 在线观看免费黄色 | 久久中文视频 | 亚洲精品无 | 中国黄色毛片 大片 | 51国产午夜精品免费视频 | 日日夜夜摸 | 蜜月久综合久久综合国产 |