我就廢話不多說了,直接上代碼吧!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
# -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.data import DataLoader, sampler from torchvision.datasets import MNIST import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec plt.rcParams[ 'figure.figsize' ] = ( 10.0 , 8.0 ) # 設置畫圖的尺寸 plt.rcParams[ 'image.interpolation' ] = 'nearest' plt.rcParams[ 'image.cmap' ] = 'gray' def show_images(images): # 定義畫圖工具 images = np.reshape(images, [images.shape[ 0 ], - 1 ]) sqrtn = int (np.ceil(np.sqrt(images.shape[ 0 ]))) sqrtimg = int (np.ceil(np.sqrt(images.shape[ 1 ]))) fig = plt.figure(figsize = (sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace = 0.05 , hspace = 0.05 ) for i, img in enumerate (images): ax = plt.subplot(gs[i]) plt.axis( 'off' ) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect( 'equal' ) plt.imshow(img.reshape([sqrtimg,sqrtimg])) return def preprocess_img(x): x = tfs.ToTensor()(x) return (x - 0.5 ) / 0.5 def deprocess_img(x): return (x + 1.0 ) / 2.0 class ChunkSampler(sampler.Sampler): # 定義一個取樣的函數 """Samples elements sequentially from some offset. Arguments: num_samples: # of desired datapoints start: offset where we should start selecting from """ def __init__( self , num_samples, start = 0 ): self .num_samples = num_samples self .start = start def __iter__( self ): return iter ( range ( self .start, self .start + self .num_samples)) def __len__( self ): return self .num_samples NUM_TRAIN = 50000 NUM_VAL = 5000 NOISE_DIM = 96 batch_size = 128 train_set = MNIST( 'E:/data' , train = True , transform = preprocess_img) train_data = DataLoader(train_set, batch_size = batch_size, sampler = ChunkSampler(NUM_TRAIN, 0 )) val_set = MNIST( 'E:/data' , train = True , transform = preprocess_img) val_data = DataLoader(val_set, batch_size = batch_size, sampler = ChunkSampler(NUM_VAL, NUM_TRAIN)) imgs = deprocess_img(train_data.__iter__(). next ()[ 0 ].view(batch_size, 784 )).numpy().squeeze() # 可視化圖片效果 show_images(imgs) #判別網絡 def discriminator(): net = nn.Sequential( nn.Linear( 784 , 256 ), nn.LeakyReLU( 0.2 ), nn.Linear( 256 , 256 ), nn.LeakyReLU( 0.2 ), nn.Linear( 256 , 1 ) ) return net #生成網絡 def generator(noise_dim = NOISE_DIM): net = nn.Sequential( nn.Linear(noise_dim, 1024 ), nn.ReLU( True ), nn.Linear( 1024 , 1024 ), nn.ReLU( True ), nn.Linear( 1024 , 784 ), nn.Tanh() ) return net #判別器的 loss 就是將真實數據的得分判斷為 1,假的數據的得分判斷為 0,而生成器的 loss 就是將假的數據判斷為 1 bce_loss = nn.BCEWithLogitsLoss() #交叉熵損失函數 def discriminator_loss(logits_real, logits_fake): # 判別器的 loss size = logits_real.shape[ 0 ] true_labels = Variable(torch.ones(size, 1 )). float () false_labels = Variable(torch.zeros(size, 1 )). float () loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels) return loss def generator_loss(logits_fake): # 生成器的 loss size = logits_fake.shape[ 0 ] true_labels = Variable(torch.ones(size, 1 )). float () loss = bce_loss(logits_fake, true_labels) return loss # 使用 adam 來進行訓練,學習率是 3e-4, beta1 是 0.5, beta2 是 0.999 def get_optimizer(net): optimizer = torch.optim.Adam(net.parameters(), lr = 3e - 4 , betas = ( 0.5 , 0.999 )) return optimizer def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every = 250 , noise_size = 96 , num_epochs = 10 ): iter_count = 0 for epoch in range (num_epochs): for x, _ in train_data: bs = x.shape[ 0 ] # 判別網絡 real_data = Variable(x).view(bs, - 1 ) # 真實數據 logits_real = D_net(real_data) # 判別網絡得分 sample_noise = (torch.rand(bs, noise_size) - 0.5 ) / 0.5 # -1 ~ 1 的均勻分布 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的數據 logits_fake = D_net(fake_images) # 判別網絡得分 d_total_error = discriminator_loss(logits_real, logits_fake) # 判別器的 loss D_optimizer.zero_grad() d_total_error.backward() D_optimizer.step() # 優化判別網絡 # 生成網絡 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的數據 gen_logits_fake = D_net(fake_images) g_error = generator_loss(gen_logits_fake) # 生成網絡的 loss G_optimizer.zero_grad() g_error.backward() G_optimizer.step() # 優化生成網絡 if (iter_count % show_every = = 0 ): print ( 'Iter: {}, D: {:.4}, G:{:.4}' . format (iter_count, d_total_error.item(), g_error.item())) imgs_numpy = deprocess_img(fake_images.data.cpu().numpy()) show_images(imgs_numpy[ 0 : 16 ]) plt.show() print () iter_count + = 1 D = discriminator() G = generator() D_optim = get_optimizer(D) G_optim = get_optimizer(G) train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss) |
以上這篇pytorch:實現簡單的GAN示例(MNIST數據集)就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/xckkcxxck/article/details/83037025