国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - PyTorch的深度學習入門教程之構建神經網絡

PyTorch的深度學習入門教程之構建神經網絡

2021-07-25 00:19雁回晴空 Python

這篇文章主要介紹了PyTorch的深度學習入門教程之構建神經網絡,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧

前言

本文參考PyTorch官網的教程,分為五個基本模塊來介紹PyTorch。為了避免文章過長,這五個模塊分別在五篇博文中介紹。

Part3:使用PyTorch構建一個神經網絡

神經網絡可以使用touch.nn來構建。nn依賴于autograd來定義模型,并且對其求導。一個nn.Module包含網絡的層(layers),同時forward(input)可以返回output。

這是一個簡單的前饋網絡。它接受輸入,然后一層一層向前傳播,最后輸出一個結果。

訓練神經網絡的典型步驟如下:

(1)  定義神經網絡,該網絡包含一些可以學習的參數(如權重)

(2)  在輸入數據集上進行迭代

(3)  使用網絡對輸入數據進行處理

(4)  計算loss(輸出值距離正確值有多遠)

(5)  將梯度反向傳播到網絡參數中

(6)  更新網絡的權重,使用簡單的更新法則:weight = weight - learning_rate* gradient,即:新的權重=舊的權重-學習率*梯度值。

1 定義網絡

我們先定義一個網絡:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
 
 
class Net(nn.Module):
 
  def __init__(self):
    super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 5x5 square convolution
    # kernel
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)
    # an affine operation: y = Wx + b
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
 
  def forward(self, x):
    # Max pooling over a (2, 2) window
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
    # If the size is a square you can only specify a single number
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(-1, self.num_flat_features(x))
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
 
  def num_flat_features(self, x):
    size = x.size()[1:] # all dimensions except the batch dimension
    num_features = 1
    for s in size:
      num_features *= s
    return num_features
 
 
net = Net()
print(net)

預期輸出:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
Net (
 
 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
 
 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
 
 (fc1): Linear (400 ->120)
 
 (fc2): Linear (120 ->84)
 
 (fc3): Linear (84 ->10)
 
)

你只需要定義forward函數,那么backward函數(梯度在此函數中計算)就會利用autograd來自動定義。你可以在forward函數中使用Tensor的任何運算。

學習到的參數可以被net.parameters()返回。

?
1
2
3
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight

預期輸出:

10

torch.Size([6, 1, 5, 5])

前向計算的輸入和輸出都是autograd.Variable,注意,這個網絡(LeNet)的輸入尺寸是32*32。為了在MNIST數據集上使用這個網絡,請把圖像大小轉變為32*32。

?
1
2
3
input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
print(out)

預期輸出:

Variable containing:
-0.0796 0.0330 0.0103 0.0250 0.1153 -0.0136 0.0234 0.0881 0.0374 -0.0359
[torch.FloatTensor of size 1x10]

將梯度緩沖區歸零,然后使用隨機梯度值進行反向傳播。

?
1
2
net.zero_grad()
out.backward(torch.randn(1, 10))

注意:torch.nn只支持mini-batches. 完整的torch.nn package只支持mini-batch形式的樣本作為輸入,并且不能只包含一個樣本。例如,nn.Conv2d會采用一個4D的Tensor(nSamples* nChannels * Height * Width)。如果你有一個單樣本,可以使用input.unsqueeze(0)來添加一個虛假的批量維度。

在繼續之前,讓我們回顧一下迄今為止所見過的所有類。

概述:

(1)  torch.Tensor——多維數組

(2)  autograd.Variable——包裝了一個Tensor,并且記錄了應用于其上的運算。與Tensor具有相同的API,同時增加了一些新東西例如backward()。并且有相對于該tensor的梯度值。

(3)  nn.Module——神經網絡模塊。封裝參數的簡便方式,對于參數向GPU移動,以及導出、加載等有幫助。

(4)  nn.Parameter——這是一種變量(Variable),當作為一個屬性(attribute)分配到一個模塊(Module)時,可以自動注冊為一個參數(parameter)。

(5)  autograd.Function——執行自動求導運算的前向和反向定義。每一個Variable運算,創建至少一個單獨的Function節點,該節點連接到創建了Variable并且編碼了它的歷史的函數身上。

2 損失函數(Loss Function)

損失函數采用輸出值和目標值作為輸入參數,來計算輸出值距離目標值還有多大差距。在nn package中有很多種不同的損失函數,最簡單的一個loss就是nn.MSELoss,它計算輸出值和目標值之間的均方差。

例如:

?
1
2
3
4
5
6
output = net(input)
target = Variable(torch.arange(1, 11)) # a dummy target, for example
criterion = nn.MSELoss()
 
loss = criterion(output, target)
print(loss)

現在,從反向看loss,使用.grad_fn屬性,你會看到一個計算graph如下:

?
1
2
3
4
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
   -> view -> linear -> relu -> linear -> relu -> linear
   -> MSELoss
   -> loss

當我們調用loss.backward(),整個的graph關于loss求導,graph中的所有Variables都會有他們自己的.grad變量。

為了理解,我們進行幾個反向步驟。

?
1
2
3
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU

預期輸出:

?
1
2
3
4
5
<torch.autograd.function.MSELossBackwardobjectat0x7fb3c0dcf4f8>
 
<torch.autograd.function.AddmmBackwardobjectat0x7fb3c0dcf408>
 
<AccumulateGradobjectat0x7fb3c0db79e8>

3 反向傳播(Backprop)

可以使用loss.backward()進行誤差反向傳播。你需要清除已經存在的梯度值,否則梯度將會積累到現有的梯度上。

現在,我們調用loss.backward(),看一看conv1的bias 梯度在backward之前和之后的值。

?
1
2
3
4
5
6
7
8
9
net.zero_grad()   # zeroes the gradient buffers of all parameters
 
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
 
loss.backward()
 
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

4 更新權重

實踐當中最簡單的更新法則就是隨機梯度下降法( StochasticGradient Descent (SGD))

?
1
weight = weight - learning_rate * gradient

執行這個操作的python代碼如下:

?
1
2
3
learning_rate = 0.01
for f in net.parameters():
  f.data.sub_(f.grad.data * learning_rate)

但是當你使用神經網絡的時候,你可能會想要嘗試多種不同的更新法則,例如SGD,Nesterov-SGD, Adam, RMSProp等。為了實現此功能,有一個package叫做torch.optim已經實現了這些。使用它也很方便:

?
1
2
3
4
5
6
7
8
9
10
11
import torch.optim as optim
 
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
 
# in your training loop:
optimizer.zero_grad()  # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()  # Does the update

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/zzlyw/article/details/78769001

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 91视频一88av| 久久久网站 | 欧美精品久久 | 国产女人爽到高潮免费视频 | 亚洲美女久久 | 99久久婷婷国产精品综合 | 免费三级网站 | 麻豆91在线观看 | 欧美亚洲国产日韩 | 国产a自拍| 毛片在线一区二区观看精品 | 成人aaaa免费全部观看 | 中文字幕精品一区二区三区精品 | 美女在线视频一区二区 | 中文字幕在线观看av | 日韩精品视频在线观看免费 | 日韩福利在线 | 欧美精品一二三区 | 欧美在线资源 | 国产精品永久免费 | 国产欧美久久久久久 | 欧美另类视频 | 日本一区二区在线视频 | 亚洲精选久久 | 一区二区在线视频 | 免费看一区二区三区 | 精品一区二区久久久久久久网站 | 日本精品久久久 | 精品福利一区二区三区 | 欧美一区二区在线观看视频 | 亚洲免费一区二区 | 久久久国产视频 | 欧美国产日韩一区 | 日韩精品一区二区在线观看 | 欧美一区永久视频免费观看 | 香蕉成人啪国产精品视频综合网 | 精品视频在线一区 | 日韩视频免费 | 国产精品国产a | 日日摸夜夜添夜夜添高潮视频 | 亚洲国产精品一区二区久久 |