一、環(huán)境配置
需要 pillow 和 pytesseract 這兩個庫,pip install 安裝就好了。
install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
安裝好Tesseract-OCR.exe
pytesseract 庫的配置:搜索找到pytesseract.py,打開該.py文件,找到 tesseract_cmd,改變它的值為剛才安裝 tesseract.exe 的路徑。
二、驗證碼識別
識別驗證碼,需要先對圖像進行預(yù)處理,去除會影響識別準確度的線條或噪點,提高識別準確度。
實例1
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 邊緣保留濾波 去噪 dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150) # 灰度圖像 gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY) # 二值化 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) # 形態(tài)學(xué)操作 腐蝕 膨脹 erode = cv.erode(binary, None, iterations=2) dilate = cv.dilate(erode, None, iterations=1) cv.imshow('dilate', dilate) # 邏輯運算 讓背景為白色 字體為黑 便于識別 cv.bitwise_not(dilate, dilate) cv.imshow('binary-image', dilate) # 識別 test_message = Image.fromarray(dilate) text = pytesseract.image_to_string(test_message) print(f'識別結(jié)果:{text}') src = cv.imread(r'./test/044.png') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
運行效果如下:
識別結(jié)果:3n3D
Process finished with exit code 0
實例2
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 邊緣保留濾波 去噪 blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60) cv.imshow('dst', blur) # 灰度圖像 gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY) # 二值化 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) print(f'二值化自適應(yīng)閾值:{ret}') cv.imshow('binary', binary) # 形態(tài)學(xué)操作 獲取結(jié)構(gòu)元素 開操作 kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2)) bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel) cv.imshow('bin1', bin1) kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3)) bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel) cv.imshow('bin2', bin2) # 邏輯運算 讓背景為白色 字體為黑 便于識別 cv.bitwise_not(bin2, bin2) cv.imshow('binary-image', bin2) # 識別 test_message = Image.fromarray(bin2) text = pytesseract.image_to_string(test_message) print(f'識別結(jié)果:{text}') src = cv.imread(r'./test/045.png') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
運行效果如下:
二值化自適應(yīng)閾值:181.0
識別結(jié)果:8A62N1Process finished with exit code 0
實例3
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 邊緣保留濾波 去噪 blur = cv.pyrMeanShiftFiltering(image, sp=8, sr=60) cv.imshow('dst', blur) # 灰度圖像 gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY) # 二值化 設(shè)置閾值 自適應(yīng)閾值的話 黃色的4會提取不出來 ret, binary = cv.threshold(gray, 185, 255, cv.THRESH_BINARY_INV) print(f'二值化設(shè)置的閾值:{ret}') cv.imshow('binary', binary) # 邏輯運算 讓背景為白色 字體為黑 便于識別 cv.bitwise_not(binary, binary) cv.imshow('bg_image', binary) # 識別 test_message = Image.fromarray(binary) text = pytesseract.image_to_string(test_message) print(f'識別結(jié)果:{text}') src = cv.imread(r'./test/045.jpg') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
運行效果如下:
二值化設(shè)置的閾值:185.0
識別結(jié)果:7364Process finished with exit code 0
到此這篇關(guān)于python opencv pytesseract 驗證碼識別的實現(xiàn)的文章就介紹到這了,更多相關(guān)opencv pytesseract 驗證碼識別內(nèi)容請搜索服務(wù)器之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持服務(wù)器之家!
原文鏈接:https://blog.csdn.net/fyfugoyfa/article/details/108160915