零、SQLAlchemy是什么?
SQLAlchemy的官網上寫著它的介紹文字:
SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives
application developers the full power and flexibility of SQL.
SQLAlchemy 是一個非常強大的ORM和數據庫工具,但是它龐大的文檔和復雜的功能總是讓很 多人望而生畏。而Django的ORM相對來說就讓很多人覺得簡單實用。
事實上,SQLAlchemy其實也沒有那么復雜,光使用它一些比較高級的功能其實并沒有比 使用Django ORM復雜多少,而它豐富的功能則能讓你在遇到更復雜的問題時處理起來得心應手。
寫作本文的主要目的在于:
- 通過對比SQLAlchemy ORM和Django ORM的主要使用方法, 盡量簡單直觀的讓Django用戶能夠快速了解和上手SQLAlchemy這款強大的工具。
- 不牽扯到SQLAlchemy具體的技術細節,包括Engine連接池、Session的具體工作原理等等
SQLAlchemy相對于Django內建的ORM來說,有幾處非常明顯的優點:
- 可獨立使用,任何使用Python的項目都可以用它來操作數據庫
- 和直接使用原始的DBAPI相比,提供了非常豐富的特性:連接池、auto-map等等
- 提供了更底層的SQL抽象語言,能用原始sql解決的問題基本上都可以用SQLAlchemy解決
- 接下來我們針對日常的數據庫操作來對比一下Django ORM和SQLAlchemy。
文中使用的 SQLAlchemy 版本為 0.9.8
一、Django VS SQLAlchemy
SQLAlchemy的安裝:
1
2
3
4
|
wget http: / / peak.telecommunity.com / dist / ez_setup.py python ez_setup.py sudo easy_install sqlalchemy sudo easy_install ipython |
1.建立數據表
首先,我們需要先建立幾個表。
(1)Django
在Django中,如果要建表,就是在models.py中定義你的數據類型:
1
2
3
4
5
6
7
|
from django.db import models class Game(models.Model): ... ... class GameCompany(models.Model): ... ... |
因為文章主要面向有經驗的Django用戶,所以此處不寫出詳細的定義代碼。定義Model以后 我們還需要在settings.py中DATABASES處設置需要連接的數據庫地址。最后,使用syncdb來 完成數據庫表的創建。
(2)SQLAlchemy
在SQLAlchemy中,定義表結構的過程和Django類似:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, Date from sqlalchemy.orm import relationship, backref Base = declarative_base() # 定義表結構 class GameCompany(Base): __tablename__ = 'game_company' id = Column(Integer, primary_key = True ) name = Column(String( 200 ), nullable = False ) country = Column(String( 50 )) class Game(Base): __tablename__ = 'game' id = Column(Integer, primary_key = True ) company_id = Column(Integer, ForeignKey( 'game_company.id' ), index = True ) category = Column(String( 10 )) name = Column(String( 200 ), nullable = False ) release_date = Column(Date) # 和Django不同,外鍵需要顯式定義,具體好壞見仁見智 # 此處的relation可以為lazy加載外鍵內容時提供一些可配置的選項 company = relationship( 'GameCompany' , backref = backref( 'games' )) # 此處定義要使用的數據庫 engine = create_engine( 'mysql://root:root@localhost:5379/sqlalchemy_tutorial?charset=utf8' ) # 調用create_all來創建表結構,已經存在的表將被忽略 Base.metadata.create_all(engine) |
2.插入一些數據
接下來,我們往表中插入一些數據
(1)Django
Django中比較常用的插入數據方法就是使用 .save() 了。
1
2
3
4
5
6
7
8
9
10
11
12
|
nintendo = GameCompany(name = "nintendo" , country = "Japan" ) nintendo.save() game1 = Game( company = nintendo, category = "ACT" , name = "Super Mario Bros" , release_date = '1985-10-18' ) game1.save() # 或者使用create Game.objects.create(... ...) |
(2)SQLAlchemy
在SQLAlchemy ORM中,有一個非常關鍵的對象 session ,所有對于數據的操作都是 通過session來進行的,所以要插入數據之前,我們得先初始化一個session:
1
2
3
|
from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind = engine) session = Session() |
之后插入數據的方法也和Django比較相似:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
# 添加數據 nintendo = GameCompany(name = "Nintendo" , country = "Japan" ) capcom = GameCompany(name = "Capcom" , country = "Japan" ) game1 = Game( company = nintendo, category = "ACT" , name = "Super Mario Bros" , release_date = '1985-10-18' ) game2 = Game( company = capcom, category = "ACT" , name = "Devil May Cry 3: Dante's Awakening" , release_date = "2005-03-01" , ) game3 = Game( company = nintendo, category = "RPG" , name = "Mario & Luigi: Dream Team" , release_date = "2013-08-11" , ) # 使用add_all來讓這些objects和session產生關系 session.add_all([nintendo, capcom, game1, game2]) # 在沒有開啟autocommit的模式下,不要忘了調用commit來讓數據寫到數據庫中 session.commit() |
除了commit之外,session還有rollback()等方法,你可以把session對象簡單看成是一次 transaction,所以當你對內容進行修改時,需要調用 session.commit() 來提交這些修改。
去文檔可以了解更多session相關內容:http://docs.sqlalchemy.org/en/rel_0_9/orm/session.html
二、常用操作
1.簡單查詢
(1)批量查詢
1
2
3
4
5
6
7
|
# -- Django -- Game.objects. filter (category = "RPG" ) # -- SQLAlchemy -- # 使用filter_by是和django ORM比較接近的方式 session.query(Game).filter_by(category = "RPG" ) session.query(Game). filter (Game.category = = "RPG" ) |
(2)查詢單個對象
1
2
3
4
5
6
7
|
# -- Django -- Game.objects.get(name = "Super Mario Bros" ) # -- SQLAlchemy -- session.query(Game).filter_by(name = "Super Mario Bros" ).one() # `get_objects_or_None()` session.query(Game).filter_by(name = "Super Mario Bros" ).scalar() |
Django中得各種 > 、< 都是使用在字段名稱后面追加 "__gt"、"__lt" 來實現的,在SQLAlchemy 中這樣的查詢還要更直觀一些
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# -- Django -- Game.objects. filter (release_date__gte = '1999-01-01' ) # 取反 Game.objects.exclude(release_date__gte = '1999-01-01' ) # -- SQLAlchemy -- session.query(Game). filter (Game.release_date > = '1999-01-01' ).count() # 取反使用 ~ 運算符 session.query(Game). filter (~Game.release_date > = '1999-01-01' ).count() 通過外鍵組合查詢 # -- Django -- Game.objecs. filter (company__name = "Nintendo" ) # -- SQLAlchemy -- session.query(Game).join(GameCompany). filter (GameCompany.name = = "Nintendo" ) |
2.多條件或查詢
1
2
3
4
5
6
7
8
|
# -- Django -- from django.db.models import Q Game.objects. filter (Q(category = "RPG" ) | Q(category = "ACT" )) # -- SQLAlchemy -- from sqlalchemy import or_ session.query(Game). filter (or_(Game.category = = "RPG" , Game.category = = "ACT" )) session.query(Game). filter ((Game.category = = "RPG" ) | (Game.category = = "ACT" )) |
(1)in查詢
1
2
3
4
5
|
# -- Django -- Game.objects. filter (category__in = [ "GAL" , "ACT" ]) # -- SQLAlchemy -- session.query(Game). filter (Game.category.in_([ "GAL" , "ACT" ])) |
(2)like查詢
1
2
3
4
5
|
# -- Django -- Game.objects. filter (name__contains = "Mario" ) # -- SQLAlchemy -- session.query(Game.name.contains( 'Mario' )) |
3.統計個數
簡單統計總數:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# -- Django -- Game.objects. filter (category = "RPG" ).count() # -- SQLAlchemy -- session.query(Game).filter_by(category = "RPG" ).count() 分組統計個數 # -- Django -- from django.db.models import Count Game.objects.values_list( 'category' ).annotate(Count( 'pk' )).order_by() # -- SQLAlchemy -- from sqlalchemy import func session.query(Game.category, func.count(Game.category)).group_by(Game.category). all () |
4.結果排序
對查詢結果進行排序:
1
2
3
4
5
6
7
8
9
10
11
|
# -- Django -- Game.objects. all ().order_by( 'release_date' ) Game.objects. all ().order_by( '-release_date' ) # 多字段排序 Game.objects. all ().order_by( '-release_date' , 'category' ) # -- SQLAlchemy -- session.query(Game).order_by(Game.release_date) session.query(Game).order_by(Game.release_date.desc()) # 多字段排序 session.query(Game).order_by(Game.release_date.desc(), Game.category) |
5.修改數據
1
2
3
4
5
6
7
8
9
|
# -- Django -- game = Game.objects.get(pk = 1 ) game.name = 'Super Mario Brothers' game.save() # -- SQLAlchemy -- game = session.query(Game).get( 1 ) game.name = 'Super Mario Brothers' session.commit() |
6.批量修改
1
2
3
4
5
|
# -- Django -- Game.objects. filter (category = "RPG" ).update(category = "ARPG" ) # -- SQLAlchemy -- session.query(Game).filter_by(category = "RPG" ).update({ "category" : "ARPG" }) |
7.批量刪除
1
2
3
4
5
|
# -- Django -- Game.objects. filter (category = "ARPG" ).delete() # -- SQLAlchemy -- session.query(Game).filter_by(category = "ARPG" ).delete() |
三、SQLAlchemy其他一些值得關注的功能
上面簡單列了一些SQLAlchemy ORM和Django ORM的使用方法對比,SQLAlchemy同時還提供了一些 其他非常有用的功能,比如Automap~
假如你有一個Django項目,通過ORM創建了一大堆Model。這時來了一個新項目,需要操作 這些表,應該怎么辦?拷貝這些Models?使用原始的DB-API加上sql來操作?
其實使用SQLAlchemy的Automap可以讓你的工作變得非常的方便,你只要在新項目連接到舊數據庫,然后 稍微配置一下Automap,就可以使用SQLAlchemy的ORM操作那些通過別的系統創建的表了。
就像這樣:
1
2
3
4
5
6
7
8
9
10
11
|
from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine Base = automap_base() engine = create_engine( "sqlite:///mydatabase.db" ) Base.prepare(engine, reflect = True ) # user和address就是表明,通過這樣的語句就可以把他們分別映射到User和Address類 User = Base.classes.user Address = Base.classes.address |
更多信息可以參考詳細文檔:http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/automap.html
附:Django與SQLAlchemy結合的實例演示
譬如,以下gumi/db.py代碼,其中gumi制作Django項目名,項目中使用的唯一的數據庫連接的包裝,作為py調用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
# -*- coding: utf-8 -*- from django.conf import settings from django.core import signals from django.dispatch import dispatcher import sqlalchemy from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.engine.url import URL __all__ = [ 'Session' , 'metadata' ] def create_engine(): url = URL(drivername = settings.DATABASE_ENGINE, database = settings.DATABASE_NAME, username = settings.DATABASE_USER, password = settings.DATABASE_PASSWORD, host = settings.DATABASE_HOST, port = settings.DATABASE_PORT or None , query = getattr (settings, 'DATABASE_OPTIONS' , {}) ) options = getattr (settings, 'SQLALCHEMY_OPTIONS' , {}) engine = sqlalchemy.create_engine(url, * * options) return engine def end_request(signal, sender): Session.remove() dispatcher.connect(receiver = end_request, signal = signals.request_finished) metadata = sqlalchemy.MetaData() Session = scoped_session(sessionmaker(autoflush = True , transactional = True , bind = create_engine())) |
模塊代碼
1
2
3
4
5
6
7
8
9
10
|
from sqlalchemy.orm import * from gumi.db import Session, metadata some_table = Table( 'some_table' , metadata, Column( 'id' , Integer, primary_key = True ), Column( 'some_value' , String( 100 ), nullable = False , mysql_engine = 'InnoDB' , ) class SomeObject( object ): pass mapper(SomeObject, some_table) |
視圖代碼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import django.newforms as forms from gumi.db import Session class SomeForm(forms.Form): # newform pass def some_action(req): if req.method ! = "POST" : form = SomeForm() else : form = SomeForm(req.POST) if form.is_valid(): data = form.clean() obj = SomeObject() obj.some_param = data[ 'a' ] obj.another_param = data[ 'b' ] Session.save(obj) Session.commit() return HttpResponseRedirect( '/' ) return render_to_response( 'some/template.html' ) |