国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語言編程技術(shù)及教程分享平臺(tái)!
分類導(dǎo)航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務(wù)器之家 - 腳本之家 - Python - keras的ImageDataGenerator和flow()的用法說明

keras的ImageDataGenerator和flow()的用法說明

2020-07-04 09:24o0程卓0o Python

這篇文章主要介紹了keras的ImageDataGenerator和flow()的用法說明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧

ImageDataGenerator的參數(shù)自己看文檔

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from keras.preprocessing import image
import numpy as np
 
X_train=np.ones((3,123,123,1))
Y_train=np.array([[1],[2],[2]])
generator=image.ImageDataGenerator(featurewise_center=False,
  samplewise_center=False,
  featurewise_std_normalization=False,
  samplewise_std_normalization=False,
  zca_whitening=False,
  zca_epsilon=1e-6,
  rotation_range=180,
  width_shift_range=0.2,
  height_shift_range=0.2,
  shear_range=0,
  zoom_range=0.001,
  channel_shift_range=0,
  fill_mode='nearest',
  cval=0.,
  horizontal_flip=True,
  vertical_flip=True,
  rescale=None,
  preprocessing_function=None,
  data_format='channels_last')
 
a=generator.flow(X_train,Y_train,batch_size=20)#生成的是一個(gè)迭代器,可直接用于for循環(huán)
'''
batch_size如果小于X的第一維m,next生成的多維矩陣的第一維是為batch_size,輸出是從輸入中隨機(jī)選取batch_size個(gè)數(shù)據(jù)
batch_size如果大于X的第一維m,next生成的多維矩陣的第一維是m,輸出是m個(gè)數(shù)據(jù),不過順序隨機(jī)
,輸出的X,Y是一一對(duì)對(duì)應(yīng)的
如果要直接用于tf.placeholder(),要求生成的矩陣和要與tf.placeholder相匹配
 
'''
X,Y=next(a)
 
print(Y)
X,Y=next(a)
 
print(Y)
X,Y=next(a)
 
print(Y)
X,Y=next(a)

輸出

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
[[2]
 [1]
 [2]]
 
[[2]
 [2]
 [1]]
 
[[2]
 [2]
 [1]]
 
[[2]
 [2]
 [1]]

補(bǔ)充知識(shí):tensorflow 與keras 混用之坑

在使用tensorflow與keras混用是model.save 是正常的但是在load_model的時(shí)候報(bào)錯(cuò)了在這里mark 一下

其中錯(cuò)誤為:TypeError: tuple indices must be integers, not list

再一一番百度后無結(jié)果,上谷歌后找到了類似的問題。但是是一對(duì)鳥文不知道什么東西(翻譯后發(fā)現(xiàn)是俄文)。后來谷歌翻譯了一下找到了解決方法。故將原始問題文章貼上來警示一下

原訓(xùn)練代碼

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
 
#Каталог с данными для обучения
train_dir = 'train'
# Каталог с данными для проверки
val_dir = 'val'
# Каталог с данными для тестирования
test_dir = 'val'
 
# Размеры изображения
img_width, img_height = 800, 800
# Размерность тензора на основе изображения для входных данных в нейронную сеть
# backend Tensorflow, channels_last
input_shape = (img_width, img_height, 3)
# Количество эпох
epochs = 1
# Размер мини-выборки
batch_size = 4
# Количество изображений для обучения
nb_train_samples = 300
# Количество изображений для проверки
nb_validation_samples = 25
# Количество изображений для тестирования
nb_test_samples = 25
 
model = Sequential()
 
model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))
 
model.add(Conv2D(64, (5, 5), padding="same"))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))
 
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
 
model.compile(loss='categorical_crossentropy',
       optimizer="Nadam",
       metrics=['accuracy'])
print(model.summary())
datagen = ImageDataGenerator(rescale=1. / 255)
 
train_generator = datagen.flow_from_directory(
  train_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
val_generator = datagen.flow_from_directory(
  val_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
test_generator = datagen.flow_from_directory(
  test_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
model.fit_generator(
  train_generator,
  steps_per_epoch=nb_train_samples // batch_size,
  epochs=epochs,
  validation_data=val_generator,
  validation_steps=nb_validation_samples // batch_size)
 
print('Сохраняем сеть')
model.save("grib.h5")
print("Сохранение завершено!")

模型載入

?
1
2
3
4
5
6
7
8
9
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import load_model
 
print("Загрузка сети")
model = load_model("grib.h5")
print("Загрузка завершена!")

報(bào)錯(cuò)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/usr/bin/python3.5 /home/disk2/py/neroset/do.py
/home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Загрузка сети
Traceback (most recent call last):
 File "/home/disk2/py/neroset/do.py", line 13, in <module>
  model = load_model("grib.h5")
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
  model = model_from_config(model_config, custom_objects=custom_objects)
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
  return layer_module.deserialize(config, custom_objects=custom_objects)
 File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
  printable_module_name='layer')
 File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
  list(custom_objects.items())))
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
  model.add(layer)
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
  output_tensor = layer(self.outputs[0])
 File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
  self.build(input_shapes[0])
 File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
  dim = input_shape[self.axis]
TypeError: tuple indices must be integers or slices, not list
 
Process finished with exit code 1

戰(zhàn)斗種族解釋

убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(譯文:整理BatchNormalization一切正常。 不要告訴我錯(cuò)誤是什么?我發(fā)現(xiàn)保存keras和規(guī)范化tensorflow不能一起工作;只需更改導(dǎo)入字符串即可。)

強(qiáng)調(diào)文本 強(qiáng)調(diào)文本

?
1
2
3
4
keras.preprocessing.image import ImageDataGenerator
keras.models import Sequential
keras.layers import Conv2D, MaxPooling2D, BatchNormalization
keras.layers import Activation, Dropout, Flatten, Dense

##完美解決

##附上原文鏈接

https://qa-help.ru/questions/keras-batchnormalization

以上這篇keras的ImageDataGenerator和flow()的用法說明就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持服務(wù)器之家。

原文鏈接:https://blog.csdn.net/CZ505632696/article/details/79515782

延伸 · 閱讀

精彩推薦
Weibo Article 1 Weibo Article 2 Weibo Article 3 Weibo Article 4 Weibo Article 5 Weibo Article 6 Weibo Article 7 Weibo Article 8 Weibo Article 9 Weibo Article 10 Weibo Article 11 Weibo Article 12 Weibo Article 13 Weibo Article 14 Weibo Article 15 Weibo Article 16 Weibo Article 17 Weibo Article 18 Weibo Article 19 Weibo Article 20 Weibo Article 21 Weibo Article 22 Weibo Article 23 Weibo Article 24 Weibo Article 25 Weibo Article 26 Weibo Article 27 Weibo Article 28 Weibo Article 29 Weibo Article 30 Weibo Article 31 Weibo Article 32 Weibo Article 33 Weibo Article 34 Weibo Article 35 Weibo Article 36 Weibo Article 37 Weibo Article 38 Weibo Article 39 Weibo Article 40
主站蜘蛛池模板: 亚洲国产一区二区在线观看 | 欧美在线a| 欧美一级二级三级视频 | 日韩中文字幕一区二区 | 久久久久久久免费观看 | 精久久| 免费看黄的视频网站 | 欧美专区在线观看 | 成人免费xxxxx在线视频软件 | 91精品国产综合久久福利软件 | 国产色网 | 日本一区二区三区中文字幕 | 自拍偷拍一区二区三区 | 91麻豆精品国产91久久久久久久久 | 亚洲一区二区三区精品动漫 | 高清久久| 日本99精品 | 一区二区三区亚洲 | 久久777| 欧美亚洲国产激情 | 国产99久久精品 | 国产精品日韩一区二区 | 男女全黄一级一级高潮免费看 | 黄色一级视频 | 亚洲成av人片在线观看香蕉 | 亚洲国产高清美女在线观看 | 黄色片视频在线观看免费 | 亚洲国产成人精品女人久久久 | 黄版视频在线观看 | 一区日韩 | 综合色区 | 毛片一级在线 | 一区二区在线 | 一区二区三区视频在线观看 | 日韩中文字幕在线免费观看 | av免费网址 | 久久久久久亚洲 | 成人午夜精品一区二区三区 | 国产黄色电影 | 毛片a级 | 国产成人综合在线观看 |