国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - keras實現調用自己訓練的模型,并去掉全連接層

keras實現調用自己訓練的模型,并去掉全連接層

2020-06-10 10:19Tom Hardy Python

這篇文章主要介紹了keras實現調用自己訓練的模型,并去掉全連接層,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

其實很簡單

?
1
2
3
4
from keras.models import load_model
 
base_model = load_model('model_resenet.h5')#加載指定的模型
print(base_model.summary())#輸出網絡的結構圖

這是我的網絡模型的輸出,其實就是它的結構圖

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to          
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                     
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]         
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]         
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]  
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]       
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]         
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]  
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]       
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]         
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]  
                                 activation_1[0][0]       
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]         
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]       
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]         
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]  
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]       
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]         
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]  
                                 activation_3[0][0]       
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]         
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]       
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]     
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]         
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]  
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]       
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]         
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]  
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]       
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]         
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]  
                                 activation_6[0][0]       
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]         
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]       
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]         
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]  
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]       
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]        
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]  
                                 activation_8[0][0]       
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]         
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 640      activation_10[0][0]      
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 6436928    max_pooling2d_2[0][0]     
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64256     conv2d_11[0][0]        
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 640      batch_normalization_11[0][0]  
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 640      activation_11[0][0]      
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 6436928    max_pooling2d_3[0][0]     
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64256     conv2d_12[0][0]        
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 640      batch_normalization_12[0][0]  
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 6436928    activation_12[0][0]      
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64256     conv2d_13[0][0]        
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 640      batch_normalization_13[0][0]  
                                 max_pooling2d_3[0][0]     
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 640      merge_5[0][0]         
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 6436928    activation_13[0][0]      
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64256     conv2d_14[0][0]        
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 640      batch_normalization_14[0][0]  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 6436928    activation_14[0][0]      
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64256     conv2d_15[0][0]        
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 640      batch_normalization_15[0][0]  
                                 activation_13[0][0]      
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 640      merge_6[0][0]         
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 640      activation_15[0][0]      
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 3218464    max_pooling2d_4[0][0]     
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32128     conv2d_16[0][0]        
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 320      batch_normalization_16[0][0]  
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 329248    activation_16[0][0]      
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32128     conv2d_17[0][0]        
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 320      batch_normalization_17[0][0]  
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 329248    activation_17[0][0]      
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32128     conv2d_18[0][0]        
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 320      batch_normalization_18[0][0]  
                                 activation_16[0][0]      
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 320      merge_7[0][0]         
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 329248    activation_18[0][0]      
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32128     conv2d_19[0][0]        
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 320      batch_normalization_19[0][0]  
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 329248    activation_19[0][0]      
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32128     conv2d_20[0][0]        
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 320      batch_normalization_20[0][0]  
                                 activation_18[0][0]      
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 320      merge_8[0][0]         
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]      
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]     
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]        
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]  
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]      
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]        
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]  
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]      
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]        
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]  
                                 activation_21[0][0]      
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]         
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]      
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]        
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]  
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]      
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]        
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]  
                                 activation_23[0][0]      
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]         
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]      
__________________________________________________________________________________________________
flatten_1 (Flatten)       (None, 64)      0      max_pooling2d_6[0][0]     
__________________________________________________________________________________________________
dense_1 (Dense)         (None, 256)     16640    flatten_1[0][0]        
__________________________________________________________________________________________________
dropout_1 (Dropout)       (None, 256)     0      dense_1[0][0]         
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 2)      514     dropout_1[0][0]        
==================================================================================================
Total params: 632,098
Trainable params: 629,538
Non-trainable params: 2,560
__________________________________________________________________________________________________

去掉模型的全連接層

?
1
2
3
4
5
6
from keras.models import load_model
 
base_model = load_model('model_resenet.h5')
resnet_model = Model(inputs=base_model.input, outputs=base_model.get_layer('max_pooling2d_6').output)
#'max_pooling2d_6'其實就是上述網絡中全連接層的前面一層,當然這里你也可以選取其它層,把該層的名稱代替'max_pooling2d_6'即可,這樣其實就是截取網絡,輸出網絡結構就是方便讀取每層的名字。
print(resnet_model.summary())

新輸出的網絡結構:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to          
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                     
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]         
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]         
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]  
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]       
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]         
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]  
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]       
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]         
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]  
                                 activation_1[0][0]       
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]         
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]       
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]         
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]  
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]       
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]         
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]  
                                 activation_3[0][0]       
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]         
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]       
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]     
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]         
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]  
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]       
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]         
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]  
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]       
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]         
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]  
                                 activation_6[0][0]       
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]         
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]       
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]         
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]  
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]       
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]        
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]  
                                 activation_8[0][0]       
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]         
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 640      activation_10[0][0]      
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 6436928    max_pooling2d_2[0][0]     
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64256     conv2d_11[0][0]        
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 640      batch_normalization_11[0][0]  
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 640      activation_11[0][0]      
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 6436928    max_pooling2d_3[0][0]     
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64256     conv2d_12[0][0]        
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 640      batch_normalization_12[0][0]  
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 6436928    activation_12[0][0]      
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64256     conv2d_13[0][0]        
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 640      batch_normalization_13[0][0]  
                                 max_pooling2d_3[0][0]     
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 640      merge_5[0][0]         
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 6436928    activation_13[0][0]      
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64256     conv2d_14[0][0]        
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 640      batch_normalization_14[0][0]  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 6436928    activation_14[0][0]      
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64256     conv2d_15[0][0]        
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 640      batch_normalization_15[0][0]  
                                 activation_13[0][0]      
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 640      merge_6[0][0]         
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 640      activation_15[0][0]      
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 3218464    max_pooling2d_4[0][0]     
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32128     conv2d_16[0][0]        
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 320      batch_normalization_16[0][0]  
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 329248    activation_16[0][0]      
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32128     conv2d_17[0][0]        
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 320      batch_normalization_17[0][0]  
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 329248    activation_17[0][0]      
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32128     conv2d_18[0][0]        
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 320      batch_normalization_18[0][0]  
                                 activation_16[0][0]      
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 320      merge_7[0][0]         
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 329248    activation_18[0][0]      
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32128     conv2d_19[0][0]        
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 320      batch_normalization_19[0][0]  
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 329248    activation_19[0][0]      
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32128     conv2d_20[0][0]        
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 320      batch_normalization_20[0][0]  
                                 activation_18[0][0]      
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 320      merge_8[0][0]         
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]      
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]     
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]        
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]  
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]      
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]        
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]  
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]      
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]        
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]  
                                 activation_21[0][0]      
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]         
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]      
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]        
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]  
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]      
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]        
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]  
                                 activation_23[0][0]      
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]         
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]      
==================================================================================================
Total params: 614,944
Trainable params: 612,384
Non-trainable params: 2,560
__________________________________________________________________________________________________

以上這篇keras實現調用自己訓練的模型,并去掉全連接層就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/qq_29462849/article/details/83010854

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 亚洲入口| 成人av播放| 国产一区二区三区视频 | 亚洲国产精品美女 | 视频一区 中文字幕 | 国产成人91| 亚洲第一视频 | 性色av一区二区三区红粉影视 | 亚洲国产精品久久久久秋霞蜜臀 | 狠狠综合久久av一区二区老牛 | 日韩在线一区二区三区 | 永久91嫩草亚洲精品人人 | 一 级 黄 色 片免费网站 | 中文在线资源 | 拍真实国产伦偷精品 | 日韩精品免费视频 | 日韩中文字幕在线 | 色婷婷精品国产一区二区三区 | 亚洲成人三级 | 久热中文字幕 | 成人黄色短视频在线观看 | 狠狠艹av| 日韩中文字幕一区 | 午夜视频播放 | 欧美三级电影在线播放 | 日韩欧美视频免费 | 男人的天堂2018 | 国产片一区二区三区 | www.四虎.com | 日韩av免费在线观看 | 国产一区久久 | 在线午夜电影 | 国产精品久久久久久久久久新婚 | 欧美亚洲视频在线观看 | 男女全黄一级一级高潮免费看 | 日韩精品一区二区三区丰满 | 日韩成人精品 | 国产精品亚洲精品 | 精品成人在线视频 | 欧美成人精品一区二区 | 国产精品色一区二区三区 |