在使用 pandas 進行數據分析的過程中,我們常常會遇到將一行數據展開成多行的需求,多么希望能有一個類似于 hive sql 中的 explode 函數。
這個函數如下:
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# !/usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode(dataframe, fieldname): temp_fieldname = fieldname + '_made_tuple_' dataframe[temp_fieldname] = dataframe[fieldname]. apply ( tuple ) list_of_dataframes = [] for values in dataframe[temp_fieldname].unique().tolist(): list_of_dataframes.append(pd.DataFrame({ temp_fieldname: [values] * len (values), fieldname: list (values), })) dataframe = dataframe[ list ( set (dataframe.columns) - set ([fieldname]))].merge(pd.concat(list_of_dataframes), how = 'left' , on = temp_fieldname) del dataframe[temp_fieldname] return dataframe df = pd.DataFrame({ 'listcol' :[[ 1 , 2 , 3 ],[ 4 , 5 , 6 ]], "aa" : [ 222 , 333 ]}) df = dataframe_explode(df, "listcol" ) |
Description
將 dataframe 按照某一指定列進行展開,使得原來的每一行展開成一行或多行。( 注:該列可迭代, 例如list, tuple, set)
補充知識:Pandas列中的字典/列表拆分為單獨的列
我就廢話不多說了,大家還是直接看代碼吧
1
2
3
4
5
6
7
|
[ 1 ] df Station ID Pollutants 8809 { "a" : "46" , "b" : "3" , "c" : "12" } 8810 { "a" : "36" , "b" : "5" , "c" : "8" } 8811 { "b" : "2" , "c" : "7" } 8812 { "c" : "11" } 8813 { "a" : "82" , "c" : "15" } |
Method 1:
step 1: convert the Pollutants column to Pandas dataframe series
1
2
3
4
5
6
7
8
9
|
df_pol_ps = data_df[ 'Pollutants' ]. apply (pd.Series) df_pol_ps: a b c 0 46 3 12 1 36 5 8 2 NaN 2 7 3 NaN NaN 11 4 82 NaN 15 |
step 2: concat columns a, b, c and drop/remove the Pollutants
1
2
3
4
5
6
7
8
9
|
df_final = pd.concat([df, df_pol_ps], axis = 1 ).drop( 'Pollutants' , axis = 1 ) df_final: StationID a b c 0 8809 46 3 12 1 8810 36 5 8 2 8811 NaN 2 7 3 8812 NaN NaN 11 4 8813 82 NaN 15 |
Method 2:
1
2
3
4
5
6
7
8
9
|
df_final = pd.concat([df, df[ 'Pollutants' ]. apply (pd.Series)], axis = 1 ).drop( 'Pollutants' , axis = 1 ) df_final: StationID a b c 0 8809 46 3 12 1 8810 36 5 8 2 8811 NaN 2 7 3 8812 NaN NaN 11 4 8813 82 NaN 15 |
以上這篇pandas dataframe 中的explode函數用法詳解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/Sinsa110/article/details/85260302