前言:JS 天然支持并行請求,但與此同時會帶來一些問題,比如會造成目標服務器壓力過大,所以本文引入“請求調度器”來節制并發度。
TLDR; 直接跳轉『抽象和復用』章節。
為了獲取一批互不依賴的資源,通常從性能考慮可以用 Promise.all(arrayOfPromises)
來并發執行。比如我們已有 100 個應用的 id,需求是聚合所有應用的 PV,我們通常會這么寫:
const ids = [1001, 1002, 1003, 1004, 1005]; const urlPrefix = "http://opensearch.example.com/api/apps"; // fetch 函數發送 HTTP 請求,返回 Promise const appPromises = ids.map(id => `${urlPrefix}/${id}`).map(fetch); Promise.all(appPromises) // 通過 reduce 做累加 .then(apps => apps.reduce((initial, current) => initial + current.pv, 0)) .catch((error) => console.log(error));
上面的代碼在應用個數不多的情況下,可以運行正常。當應用個數達到成千上萬時,對支持并發數不是很好的系統,你的「壓測」會把第三放服務器搞掛,暫時無法響應請求:
<html> <head><title>502 Bad Gateway</title></head> <body bgcolor="white"> <center><h1>502 Bad Gateway</h1></center> <hr><center>nginx/1.10.1</center> </body> </html>
如何解決呢?
一個很自然的想法是,既然不支持這么多的并發請求,那就分割成幾大塊,每塊為一個 chunk
,chunk
內部的請求依然并發,但塊的大小(chunkSize
)限制在系統支持的最大并發數以內。前一個 chunk
結束后一個 chunk
才能繼續執行,也就是說 chunk
內部的請求是并發的,但 chunk
之間是串行的。思路其實很簡單,寫起來卻有一定難度。總結起來三個操作:分塊、串行、聚合
難點在如何串行執行 Promise,Promise 僅提供了并行(Promise.all
)功能,并沒有提供串行功能。我們從簡單的三個請求開始,看如何實現,啟發式解決問題(heuristic)。
// task1, task2, task3 是三個返回 Promise 的工廠函數,模擬我們的異步請求 const task1 = () => new Promise((resolve) => { setTimeout(() => { resolve(1); console.log("task1 executed"); }, 1000); }); const task2 = () => new Promise((resolve) => { setTimeout(() => { resolve(2); console.log("task2 executed"); }, 1000); }); const task3 = () => new Promise((resolve) => { setTimeout(() => { resolve(3); console.log("task3 executed"); }, 1000); }); // 聚合結果 let result = 0; const resultPromise = [task1, task2, task3].reduce((current, next) => current.then((number) => { console.log("resolved with number", number); // task2, task3 的 Promise 將在這里被 resolve result += number; return next(); }), Promise.resolve(0)) // 聚合初始值 .then(function(last) { console.log("The last promise resolved with number", last); // task3 的 Promise 在這里被 resolve result += last; console.log("all executed with result", result); return Promise.resolve(result); });
運行結果如圖 1:
代碼解析:我們想要的效果,直觀展示其實是 fn1().then(() => fn2()).then(() => fn3())
。上面代碼能讓一組 Promise
按順序執行的關鍵之處就在 reduce
這個“引擎”在一步步推動 Promise
工廠函數的執行。
難點解決了,我們看看最終代碼:
/** * 模擬 HTTP 請求 * @param {String} url * @return {Promise} */ function fetch(url) { console.log(`Fetching ${url}`); return new Promise((resolve) => { setTimeout(() => resolve({ pv: Number(url.match(/d+$/)) }), 2000); }); } const urlPrefix = "http://opensearch.example.com/api/apps"; const aggregator = { /** * 入口方法,開啟定時任務 * * @return {Promise} */ start() { return this.fetchAppIds() .then(ids => this.fetchAppsSerially(ids, 2)) .then(apps => this.sumPv(apps)) .catch(error => console.error(error)); }, /** * 獲取所有應用的 ID * * @private * * @return {Promise} */ fetchAppIds() { return Promise.resolve([1001, 1002, 1003, 1004, 1005]); }, promiseFactory(ids) { return () => Promise.all(ids.map(id => `${urlPrefix}/${id}`).map(fetch)); }, /** * 獲取所有應用的詳情 * * 一次并發請求 `concurrency` 個應用,稱為一個 chunk * 前一個 `chunk` 并發完成后一個才繼續,直至所有應用獲取完畢 * * @private * * @param {[Number]} ids * @param {Number} concurrency 一次并發的請求數量 * @return {[Object]} 所有應用的信息 */ fetchAppsSerially(ids, concurrency = 100) { // 分塊 let chunkOfIds = ids.splice(0, concurrency); const tasks = []; while (chunkOfIds.length !== 0) { tasks.push(this.promiseFactory(chunkOfIds)); chunkOfIds = ids.splice(0, concurrency); } // 按塊順序執行 const result = []; return tasks.reduce((current, next) => current.then((chunkOfApps) => { console.info("Chunk of", chunkOfApps.length, "concurrency requests has finished with result:", chunkOfApps, " "); result.push(...chunkOfApps); // 拍扁數組 return next(); }), Promise.resolve([])) .then((lastchunkOfApps) => { console.info("Chunk of", lastchunkOfApps.length, "concurrency requests has finished with result:", lastchunkOfApps, " "); result.push(...lastchunkOfApps); // 再次拍扁它 console.info("All chunks has been executed with result", result); return result; }); }, /** * 聚合所有應用的 PV * * @private * * @param {[]} apps * @return {[type]} [description] */ sumPv(apps) { const initial = { pv: 0 }; return apps.reduce((accumulator, app) => ({ pv: accumulator.pv + app.pv }), initial); } }; // 開始運行 aggregator.start().then(console.log);
運行結果如圖 2:
抽象和復用
目的達到了,因具備通用性,下面開始抽象成一個模式以便復用。
串行
先模擬一個 http get 請求。
/** * mocked http get. * @param {string} url * @returns {{ url: string; delay: number; }} */ function httpGet(url) { const delay = Math.random() * 1000; console.info("GET", url); return new Promise((resolve) => { setTimeout(() => { resolve({ url, delay, at: Date.now() }) }, delay); }) }
串行執行一批請求。
const ids = [1, 2, 3, 4, 5, 6, 7]; // 批量請求函數,注意是 delay 執行的『函數』對了,否則會立即將請求發送出去,達不到串行的目的 const httpGetters = ids.map(id => () => httpGet(`https://jsonplaceholder.typicode.com/posts/${id}`) ); // 串行執行之 const tasks = await httpGetters.reduce((acc, cur) => { return acc.then(cur); // 簡寫,等價于 // return acc.then(() => cur()); }, Promise.resolve()); tasks.then(() => { console.log("done"); });
注意觀察控制臺輸出,應該串行輸出以下內容:
GET https://jsonplaceholder.typicode.com/posts/1 GET https://jsonplaceholder.typicode.com/posts/2 GET https://jsonplaceholder.typicode.com/posts/3 GET https://jsonplaceholder.typicode.com/posts/4 GET https://jsonplaceholder.typicode.com/posts/5 GET https://jsonplaceholder.typicode.com/posts/6 GET https://jsonplaceholder.typicode.com/posts/7
分段串行,段中并行
重點來了。本文的請求調度器實現
/** * Schedule promises. * @param {Array<(...arg: any[]) => Promise<any>>} factories * @param {number} concurrency */ function schedulePromises(factories, concurrency) { /** * chunk * @param {any[]} arr * @param {number} size * @returns {Array<any[]>} */ const chunk = (arr, size = 1) => { return arr.reduce((acc, cur, idx) => { const modulo = idx % size; if (modulo === 0) { acc[acc.length] = [cur]; } else { acc[acc.length - 1].push(cur); } return acc; }, []) }; const chunks = chunk(factories, concurrency); let resps = []; return chunks.reduce( (acc, cur) => { return acc .then(() => { console.log("---"); return Promise.all(cur.map(f => f())); }) .then((intermediateResponses) => { resps.push(...intermediateResponses); return resps; }) }, Promise.resolve() ); }
測試下,執行調度器:
// 分段串行,段中并行 schedulePromises(httpGetters, 3).then((resps) => { console.log("resps:", resps); });
控制臺輸出:
--- GET https://jsonplaceholder.typicode.com/posts/1 GET https://jsonplaceholder.typicode.com/posts/2 GET https://jsonplaceholder.typicode.com/posts/3 --- GET https://jsonplaceholder.typicode.com/posts/4 GET https://jsonplaceholder.typicode.com/posts/5 GET https://jsonplaceholder.typicode.com/posts/6 --- GET https://jsonplaceholder.typicode.com/posts/7 resps: [ { "url": "https://jsonplaceholder.typicode.com/posts/1", "delay": 733.010980640727, "at": 1615131322163 }, { "url": "https://jsonplaceholder.typicode.com/posts/2", "delay": 594.5056229848931, "at": 1615131322024 }, { "url": "https://jsonplaceholder.typicode.com/posts/3", "delay": 738.8230109146299, "at": 1615131322168 }, { "url": "https://jsonplaceholder.typicode.com/posts/4", "delay": 525.4604386109747, "at": 1615131322698 }, { "url": "https://jsonplaceholder.typicode.com/posts/5", "delay": 29.086379722201183, "at": 1615131322201 }, { "url": "https://jsonplaceholder.typicode.com/posts/6", "delay": 592.2345027398272, "at": 1615131322765 }, { "url": "https://jsonplaceholder.typicode.com/posts/7", "delay": 513.0684467560949, "at": 1615131323284 } ]
總結
- 如果并發請求的數量太大,可以考慮分塊串行,塊中請求并發。
- 問題看似復雜,不放先簡化之,然后一步步推導出關鍵點,最后抽象,就能找到解決方案。
-
本文的精髓在于使用
reduce
作為串行推動的引擎,故掌握其對我們日常開發遇到的迷局破解可提供新思路,reduce
精通見上篇 你終于用 Reduce 了 。
以上就是JS 實現請求調度器的詳細內容,更多關于JS 請求調度器的資料請關注服務器之家其它相關文章!
原文鏈接:https://juejin.cn/post/6936859831060037668