1、問題描述
某廠生產甲乙兩種飲料,每百箱甲飲料需用原料6千克、工人10名,獲利10萬元;每百箱乙飲料需用原料5千克、工人20名,獲利9萬元。
今工廠共有原料60千克、工人150名,又由于其他條件所限甲飲料產量不超過8百箱。
(1)問如何安排生產計劃,即兩種飲料各生產多少使獲利最大?
?。?)若投資0.8萬元可增加原料1千克,是否應作這項投資?投資多少合理?
?。?)若每百箱甲飲料獲利可增加1萬元,是否應否改變生產計劃?
?。?)若每百箱甲飲料獲利可增加1萬元,若投資0.8萬元可增加原料1千克,是否應作這項投資?投資多少合理?
?。?)若不允許散箱(按整百箱生產),如何安排生產計劃,即兩種飲料各生產多少使獲利最大?
2、用PuLP 庫求解線性規劃
2.1 問題 1
(1)數學建模
問題建模:
決策變量:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
目標函數:
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import pulp # 導入 pulp庫 ProbLP1 = pulp.LpProblem( "ProbLP1" , sense = pulp.LpMaximize) # 定義問題 1,求最大值 x1 = pulp.LpVariable( 'x1' , lowBound = 0 , upBound = 8 , cat = 'Continuous' ) # 定義 x1 x2 = pulp.LpVariable( 'x2' , lowBound = 0 , upBound = 7.5 , cat = 'Continuous' ) # 定義 x2 ProbLP1 + = ( 10 * x1 + 9 * x2) # 設置目標函數 f(x) ProbLP1 + = ( 6 * x1 + 5 * x2 < = 60 ) # 不等式約束 ProbLP1 + = ( 10 * x1 + 20 * x2 < = 150 ) # 不等式約束 ProbLP1.solve() print (ProbLP1.name) # 輸出求解狀態 print ( "Status:" , pulp.LpStatus[ProbLP1.status]) # 輸出求解狀態 for v in ProbLP1.variables(): print (v.name, "=" , v.varValue) # 輸出每個變量的最優值 print ( "F1(x)=" , pulp.value(ProbLP1.objective)) # 輸出最優解的目標函數值 # = 關注 Youcans,分享原創系列 https://blog.csdn.net/youcans = |
(3)運行結果
1
2
3
4
|
ProbLP1 x1=6.4285714 x2=4.2857143 F1(X)=102.8571427 |
2.2 問題 2
(1)數學建模
問題建模:
決策變量:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
x3:增加投資(單位:萬元)
目標函數:
max fx = 10*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import pulp # 導入 pulp庫 ProbLP2 = pulp.LpProblem( "ProbLP2" , sense = pulp.LpMaximize) # 定義問題 2,求最大值 x1 = pulp.LpVariable( 'x1' , lowBound = 0 , upBound = 8 , cat = 'Continuous' ) # 定義 x1 x2 = pulp.LpVariable( 'x2' , lowBound = 0 , upBound = 7.5 , cat = 'Continuous' ) # 定義 x2 x3 = pulp.LpVariable( 'x3' , cat = 'Continuous' ) # 定義 x3 ProbLP2 + = ( 10 * x1 + 9 * x2 - x3) # 設置目標函數 f(x) ProbLP2 + = ( 6 * x1 + 5 * x2 - 1.25 * x3 < = 60 ) # 不等式約束 ProbLP2 + = ( 10 * x1 + 20 * x2 < = 150 ) # 不等式約束 ProbLP2.solve() print (ProbLP2.name) # 輸出求解狀態 print ( "Status:" , pulp.LpStatus[ProbLP2.status]) # 輸出求解狀態 for v in ProbLP2.variables(): print (v.name, "=" , v.varValue) # 輸出每個變量的最優值 print ( "F2(x)=" , pulp.value(ProbLP2.objective)) # 輸出最優解的目標函數值 |
(3)運行結果
1
2
3
4
5
|
ProbLP2 x1=8.0 x2=3.5 x3=4.4 F2(X)=107.1 |
2.3 問題 3
(1)數學建模
問題建模:
決策變量:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
目標函數:
max fx = 11*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import pulp # 導入 pulp庫 ProbLP3 = pulp.LpProblem( "ProbLP3" , sense = pulp.LpMaximize) # 定義問題 3,求最大值 x1 = pulp.LpVariable( 'x1' , lowBound = 0 , upBound = 8 , cat = 'Continuous' ) # 定義 x1 x2 = pulp.LpVariable( 'x2' , lowBound = 0 , upBound = 7.5 , cat = 'Continuous' ) # 定義 x2 ProbLP3 + = ( 11 * x1 + 9 * x2) # 設置目標函數 f(x) ProbLP3 + = ( 6 * x1 + 5 * x2 < = 60 ) # 不等式約束 ProbLP3 + = ( 10 * x1 + 20 * x2 < = 150 ) # 不等式約束 ProbLP3.solve() print (ProbLP3.name) # 輸出求解狀態 print ( "Status:" , pulp.LpStatus[ProbLP3.status]) # 輸出求解狀態 for v in ProbLP3.variables(): print (v.name, "=" , v.varValue) # 輸出每個變量的最優值 print ( "F3(x) =" , pulp.value(ProbLP3.objective)) # 輸出最優解的目標函數值 |
(3)運行結果
1
2
3
4
|
ProbLP3 x1=8.0 x2=2.4 F3(X) = 109.6 |
2.4 問題 4
(1)數學建模
問題建模:
決策變量:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
x3:增加投資(單位:萬元)
目標函數:
max fx = 11*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import pulp # 導入 pulp庫 ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定義問題 2,求最大值 x1 = pulp.LpVariable( 'x1' , lowBound = 0 , upBound = 8 , cat = 'Continuous' ) # 定義 x1 x2 = pulp.LpVariable( 'x2' , lowBound = 0 , upBound = 7.5 , cat = 'Continuous' ) # 定義 x2 x3 = pulp.LpVariable( 'x3' , cat = 'Continuous' ) # 定義 x3 ProbLP4 + = ( 11 * x1 + 9 * x2 - x3) # 設置目標函數 f(x) ProbLP4 + = ( 6 * x1 + 5 * x2 - 1.25 * x3 < = 60 ) # 不等式約束 ProbLP4 + = ( 10 * x1 + 20 * x2 < = 150 ) # 不等式約束 ProbLP4.solve() print (ProbLP4.name) # 輸出求解狀態 print ( "Status:" , pulp.LpStatus[ProbLP4.status]) # 輸出求解狀態 for v in ProbLP4.variables(): print (v.name, "=" , v.varValue) # 輸出每個變量的最優值 print ( "F4(x) = " , pulp.value(ProbLP4.objective)) # 輸出最優解的目標函數值 # = 關注 Youcans,分享原創系列 https://blog.csdn.net/youcans = |
(3)運行結果
1
2
3
4
5
|
ProbLP4 x1=8.0 x2=3.5 x3=4.4 F4(X) = 115.1 |
2.5 問題 5:整數規劃問題
(1)數學建模
問題建模:
決策變量:
x1:甲飲料產量,正整數(單位:百箱)
x2:乙飲料產量,正整數(單位:百箱)
目標函數:
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8,x1, x2 為整數
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7
說明:本題中要求飲料車輛為整百箱,即決策變量 x1,x2 為整數,因此是整數規劃問題。PuLP提供了整數規劃的
(2)Python 編程
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import pulp # 導入 pulp庫 ProbLP5 = pulp.LpProblem( "ProbLP5" , sense = pulp.LpMaximize) # 定義問題 1,求最大值 x1 = pulp.LpVariable( 'x1' , lowBound = 0 , upBound = 8 , cat = 'Integer' ) # 定義 x1,變量類型:整數 x2 = pulp.LpVariable( 'x2' , lowBound = 0 , upBound = 7.5 , cat = 'Integer' ) # 定義 x2,變量類型:整數 ProbLP5 + = ( 10 * x1 + 9 * x2) # 設置目標函數 f(x) ProbLP5 + = ( 6 * x1 + 5 * x2 < = 60 ) # 不等式約束 ProbLP5 + = ( 10 * x1 + 20 * x2 < = 150 ) # 不等式約束 ProbLP5.solve() print (ProbLP5.name) # 輸出求解狀態 print ( "Status:" , pulp.LpStatus[ProbLP5.status]) # 輸出求解狀態 for v in ProbLP5.variables(): print (v.name, "=" , v.varValue) # 輸出每個變量的最優值 print ( "F5(x) =" , pulp.value(ProbLP5.objective)) # 輸出最優解的目標函數值 |
(3)運行結果
1
2
3
4
|
ProbLP5 x1=8.0 x2=2.0 F5(X) = 98.0 |
以上就是Python數學建模PuLP庫線性規劃實際案例編程詳解的詳細內容,更多關于PuLP庫線性規劃實際編程案例的資料請關注服務器之家其它相關文章!
原文鏈接:https://blog.csdn.net/youcans/article/details/116371509