本文基于免費代碼營基本算法腳本“分解數字”
在數學中,非負整數n的階乘可能是一個棘手的算法。在本文中,我將解釋這種方法,首先使用遞歸函數,第二種使用而循環,第三種使用以循環。
算法挑戰
返回提供的整體的階乘。
如果整體用字母n表示,則階乘是所有小于或等于n的正整數的乘積。
階乘經常用簡寫符號n!表示!
例如:5!= 1 * 2 * 3 * 4 * 5 = 120
1
2
3
4
|
function factorialize(num) { return num; } factorialize(5); |
提供的測試用例
- factorialize(0)應該返回1
- factorialize(5)應該返回120
- factorialize(10)應該返回3628800
- factorialize(20)應該返回2432902008176640000
什么是因數分解?
當將一個因數分解時,就是稱為數字乘以每個連續的數字減一個。
如果您的電話號碼是5,則您將:
5! = 5 * 4 * 3 * 2 * 1
該模式為:
0! = 1
1! = 1
2! = 2 * 1
3! = 3 * 2 * 1
4! = 4 * 3 * 2 * 1
5! = 5 * 4 * 3 * 2 * 1
1.遞歸分解一個數字
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
function factorialize(num) { // If the number is less than 0, reject it. if (num < 0) return -1; // If the number is 0, its factorial is 1. else if (num == 0) return 1; // Otherwise, call the recursive procedure again else { return (num * factorialize(num - 1)); /* First Part of the recursion method You need to remember that you won't have just one call, you'll have several nested calls Each call: num === "?" num * factorialize(num - 1) 1st call – factorialize(5) will return 5 * factorialize(5 - 1) // factorialize(4) 2nd call – factorialize(4) will return 4 * factorialize(4 - 1) // factorialize(3) 3rd call – factorialize(3) will return 3 * factorialize(3 - 1) // factorialize(2) 4th call – factorialize(2) will return 2 * factorialize(2 - 1) // factorialize(1) 5th call – factorialize(1) will return 1 * factorialize(1 - 1) // factorialize(0) Second part of the recursion method The method hits the if condition, it returns 1 which num will multiply itself with The function will exit with the total value 5th call will return (5 * (5 - 1)) // num = 5 * 4 4th call will return (20 * (4 - 1)) // num = 20 * 3 3rd call will return (60 * (3 - 1)) // num = 60 * 2 2nd call will return (120 * (2 - 1)) // num = 120 * 1 1st call will return (120) // num = 120 If we sum up all the calls in one line, we have (5 * (5 - 1) * (4 - 1) * (3 - 1) * (2 - 1)) = 5 * 4 * 3 * 2 * 1 = 120 */ } } factorialize(5); |
沒有注釋:
1
2
3
4
5
6
7
8
9
10
|
function factorialize(num) { if (num < 0) return -1; else if (num == 0) return 1; else { return (num * factorialize(num - 1)); } } factorialize(5); |
2.用WHILE循環分解一個數字
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
function factorialize(num) { // Step 1. Create a variable result to store num var result = num; // If num = 0 OR num = 1, the factorial will return 1 if (num === 0 || num === 1) return 1; // Step 2. Create the WHILE loop while (num > 1) { num--; // decrementation by 1 at each iteration result = result * num; // or result *= num; /* num num-- var result result *= num 1st iteration: 5 4 5 20 = 5 * 4 2nd iteration: 4 3 20 60 = 20 * 3 3rd iteration: 3 2 60 120 = 60 * 2 4th iteration: 2 1 120 120 = 120 * 1 5th iteration: 1 0 120 End of the WHILE loop */ } // Step 3. Return the factorial of the provided integer return result; // 120 } factorialize(5); |
沒有注釋:
1
2
3
4
5
6
7
8
9
10
11
|
function factorialize(num) { var result = num; if (num === 0 || num === 1) return 1; while (num > 1) { num--; result *= num; } return result; } factorialize(5); |
3.使用FOR循環分解數字
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
function factorialize(num) { // If num = 0 OR num = 1, the factorial will return 1 if (num === 0 || num === 1) return 1; // We start the FOR loop with i = 4 // We decrement i after each iteration for ( var i = num - 1; i >= 1; i--) { // We store the value of num at each iteration num = num * i; // or num *= i; /* num var i = num - 1 num *= i i-- i >= 1? 1st iteration: 5 4 = 5 - 1 20 = 5 * 4 3 yes 2nd iteration: 20 3 = 4 - 1 60 = 20 * 3 2 yes 3rd iteration: 60 2 = 3 - 1 120 = 60 * 2 1 yes 4th iteration: 120 1 = 2 - 1 120 = 120 * 1 0 no 5th iteration: 120 0 120 End of the FOR loop */ } return num; //120 } factorialize(5); |
沒有注釋:
1
2
3
4
5
6
7
8
9
|
function factorialize(num) { if (num === 0 || num === 1) return 1; for ( var i = num - 1; i >= 1; i--) { num *= i; } return num; } factorialize(5); |
到此這篇關于詳解JavaScript中分解數字的三種方法的文章就介紹到這了,更多相關js分解數字內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家!
原文鏈接:https://blog.csdn.net/qq_25879801/article/details/111332992