如果最小二乘線性回歸算法最小化到回歸直線的豎直距離(即,平行于y軸方向),則戴明回歸最小化到回歸直線的總距離(即,垂直于回歸直線)。其最小化x值和y值兩個方向的誤差,具體的對比圖如下圖。
線性回歸算法和戴明回歸算法的區(qū)別。左邊的線性回歸最小化到回歸直線的豎直距離;右邊的戴明回歸最小化到回歸直線的總距離。
線性回歸算法的損失函數(shù)最小化豎直距離;而這里需要最小化總距離。給定直線的斜率和截距,則求解一個點到直線的垂直距離有已知的幾何公式。代入幾何公式并使tensorflow最小化距離。
損失函數(shù)是由分子和分母組成的幾何公式。給定直線y=mx+b,點(x0,y0),則求兩者間的距離的公式為:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
# 戴明回歸 #---------------------------------- # # this function shows how to use tensorflow to # solve linear deming regression. # y = ax + b # # we will use the iris data, specifically: # y = sepal length # x = petal width import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # create graph sess = tf.session() # load the data # iris.data = [(sepal length, sepal width, petal length, petal width)] iris = datasets.load_iris() x_vals = np.array([x[ 3 ] for x in iris.data]) y_vals = np.array([y[ 0 ] for y in iris.data]) # declare batch size batch_size = 50 # initialize placeholders x_data = tf.placeholder(shape = [none, 1 ], dtype = tf.float32) y_target = tf.placeholder(shape = [none, 1 ], dtype = tf.float32) # create variables for linear regression a = tf.variable(tf.random_normal(shape = [ 1 , 1 ])) b = tf.variable(tf.random_normal(shape = [ 1 , 1 ])) # declare model operations model_output = tf.add(tf.matmul(x_data, a), b) # declare demming loss function demming_numerator = tf. abs (tf.subtract(y_target, tf.add(tf.matmul(x_data, a), b))) demming_denominator = tf.sqrt(tf.add(tf.square(a), 1 )) loss = tf.reduce_mean(tf.truediv(demming_numerator, demming_denominator)) # declare optimizer my_opt = tf.train.gradientdescentoptimizer( 0.1 ) train_step = my_opt.minimize(loss) # initialize variables init = tf.global_variables_initializer() sess.run(init) # training loop loss_vec = [] for i in range ( 250 ): rand_index = np.random.choice( len (x_vals), size = batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict = {x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) if (i + 1 ) % 50 = = 0 : print ( 'step #' + str (i + 1 ) + ' a = ' + str (sess.run(a)) + ' b = ' + str (sess.run(b))) print ( 'loss = ' + str (temp_loss)) # get the optimal coefficients [slope] = sess.run(a) [y_intercept] = sess.run(b) # get best fit line best_fit = [] for i in x_vals: best_fit.append(slope * i + y_intercept) # plot the result plt.plot(x_vals, y_vals, 'o' , label = 'data points' ) plt.plot(x_vals, best_fit, 'r-' , label = 'best fit line' , linewidth = 3 ) plt.legend(loc = 'upper left' ) plt.title( 'sepal length vs pedal width' ) plt.xlabel( 'pedal width' ) plt.ylabel( 'sepal length' ) plt.show() # plot loss over time plt.plot(loss_vec, 'k-' ) plt.title( 'l2 loss per generation' ) plt.xlabel( 'generation' ) plt.ylabel( 'l2 loss' ) plt.show() |
結(jié)果:
本文的戴明回歸算法與線性回歸算法得到的結(jié)果基本一致。兩者之間的關(guān)鍵不同點在于預(yù)測值與數(shù)據(jù)點間的損失函數(shù)度量:線性回歸算法的損失函數(shù)是豎直距離損失;而戴明回歸算法是垂直距離損失(到x軸和y軸的總距離損失)。
注意,這里戴明回歸算法的實現(xiàn)類型是總體回歸(總的最小二乘法誤差)??傮w回歸算法是假設(shè)x值和y值的誤差是相似的。我們也可以根據(jù)不同的理念使用不同的誤差來擴展x軸和y軸的距離計算。
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持服務(wù)器之家。
原文鏈接:https://blog.csdn.net/lilongsy/article/details/79363189