国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - 使用python遍歷指定城市的一周氣溫

使用python遍歷指定城市的一周氣溫

2020-09-27 13:27yrsss Python

本文主要介紹了使用python遍歷指定城市的一周氣溫的實現方法。具有很好的參考價值,下面跟著小編一起來看下吧

處于興趣,寫了一個遍歷指定城市五天內的天氣預報,并轉為華氏度顯示。

把城市名字寫到一個列表里這樣可以方便的添加城市。并附有詳細注釋

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import requests
import json
#定義一個函數 避免代碼重寫多次。
def gettemp(week,d_or_n,date):
 wendu=data['result']['weather'][week]['info'][d_or_n][date] #對字典進行拆分
 return int(wendu)
 
def getft(t):
 ft=t*1.8+32
 return float(str(ft)[0:4])
 
cities=['保定','北京','上海','武漢','鄭州','齊齊哈爾'] #這里可以指定想要遍歷的城市
url='http://api.avatardata.cn/Weather/Query?key=68e75677978441f6872c1106175b8673&cityname=' #用于和cities里的城市進行字符串拼接
low=0
high=2
for city in cities:
 r = requests.get(url+city) # 最基本的GET請求
 #print(r.status_code)  獲取返回狀態(tài)200是成功
 #print(r.text) 打印解碼后的返回數據
 data=json.loads(r.text) #返回的json數據被轉換為字典類型
 #print(type(data)) data 的數據類型是字典 所以可以按照字典操作(字典里的列表就按列表操作)
 print(city,'近五天天氣預報:')
 for i in range(5):
  week='周'+str(data['result']['weather'][i]['week']) #對字典類型進行逐個拆分 如列表 元組等。
  daylow=gettemp(i,'day',low)
  dlf=getft(daylow)
  dayhigh=gettemp(i,'day',high)
  dhf=getft(dayhigh)
  nightlow=gettemp(i,'night',low)
  nlf=getft(nightlow)
  nighthigh=gettemp(i,'night',high)
  nhf=getft(nighthigh)
  print(week,'白天氣溫:',daylow,'~',dayhigh,'攝氏度','晚上氣溫:',nightlow,'~',nighthigh,'攝氏度')
  print(' ','白天氣溫:',dlf,'~',dhf,'華氏度','晚上氣溫:',nlf,'~',nhf,'華氏度')
 print('\n')
 
{"result":{"realtime":{"wind":{"windspeed":null,"direct":"西風","power":"3級","offset":null},"time":"16:00:00","weather":{"humidity":"27","img":"0","info":"晴","temperature":"13"},"dataUptime":"1490517362","date":"2017-03-26","city_code":"101090201","city_name":"保定","week":"0","moon":"二月廿九"},"life":{"date":"2017-3-26","info":{"kongtiao":["開啟制暖空調","您將感到有些冷,可以適當開啟制暖空調調節(jié)室內溫度,以免著涼感冒。"],"yundong":["較適宜","天氣較好,但考慮風力較強且氣溫較低,推薦您進行室內運動,若在戶外運動注意防風并適當增減衣物。"],"ziwaixian":["中等","屬中等強度紫外線輻射天氣,外出時建議涂擦SPF高于15、PA+的防曬護膚品,戴帽子、太陽鏡。"],"ganmao":["較易發(fā)","晝夜溫差較大,較易發(fā)生感冒,請適當增減衣服。體質較弱的朋友請注意防護。"],"xiche":["較適宜","較適宜洗車,未來一天無雨,風力較小,擦洗一新的汽車至少能保持一天。"],"wuran":null,"chuanyi":["冷","天氣冷,建議著棉服、羽絨服、皮夾克加羊毛衫等冬季服裝。年老體弱者宜著厚棉衣、冬大衣或厚羽絨服。"]}},"weather":[{"date":"2017-03-26","week":"日","nongli":"二月廿九","info":{"dawn":null,"day":["0","晴","17","西北風","3-4 級","06:12"],"night":["0","晴","2","西南風","微風","18:36"]}},{"date":"2017-03-27","week":"一","nongli":"二月三十","info":{"dawn":["0","晴","2","西南風","微風","18:36"],"day":["0","晴","15","南風","微風","06:11"],"night":["7","小雨","3","南風","微風","18:37"]}},{"date":"2017-03-28","week":"二","nongli":"三月初一","info":{"dawn":["7","小雨","3","南風","微風","18:37"],"day":["1","多云","15","南風","微風","06:09"],"night":["0","晴","3","南風","微風","18:38"]}},{"date":"2017-03-29","week":"三","nongli":"三月初二","info":{"dawn":["0","晴","3","南風","微風","18:38"],"day":["0","晴","18","南風","微風","06:08"],"night":["0","晴","3","北風","微風","18:39"]}},{"date":"2017-03-30","week":"四","nongli":"三月初三","info":{"dawn":["0","晴","3","北風","微風","18:39"],"day":["0","晴","17","北風","微風","06:06"],"night":["0","晴","3","北風","微風","18:40"]}}],"pm25":{"key":"Baoding","show_desc":"0","pm25":{"curPm":"34","pm25":"14","pm10":"26","level":"1","quality":"優(yōu)","des":"空氣很好,可以外出活動"},"dateTime":"2017年03月26日16時","cityName":"保定"},"isForeign":0},"error_code":0,"reason":"Succes"}
這是返回的一個json數據,可以通過json格式化工具查看會方便一些,通過json.loads其實都是字典列表的一些嵌套,而想要取的數據 在字典里"result"里, 而data['result'] 又是一個字典,
{'life': {'date': '2017-3-26', 'info': {'yundong': ['較適宜', '天氣較好,但考慮風力較強且氣溫較低,推薦您進行室內運動,若在戶外運動注意防風并適當增減衣物。'], 'xiche': ['較適宜', '較適宜洗車,未來一天無雨,風力較小,擦洗一新的汽車至少能保持一天。'], 'ganmao': ['較易發(fā)', '晝夜溫差較大,較易發(fā)生感冒,請適當增減衣服。體質較弱的朋友請注意防護。'], 'ziwaixian': ['中等', '屬中等強度紫外線輻射天氣,外出時建議涂擦SPF高于15、PA+的防曬護膚品,戴帽子、太陽鏡。'], 'chuanyi': ['冷', '天氣冷,建議著棉服、羽絨服、皮夾克加羊毛衫等冬季服裝。年老體弱者宜著厚棉衣、冬大衣或厚羽絨服。'], 'wuran': None, 'kongtiao': ['開啟制暖空調', '您將感到有些冷,可以適當開啟制暖空調調節(jié)室內溫度,以免著涼感冒。']}}, 'weather': [{'date': '2017-03-26', 'week': '日', 'info': {'dawn': None, 'night': ['0', '晴', '2', '西南風', '微風', '18:36'], 'day': ['0', '晴', '17', '西北風', '3-4 級', '06:12']}, 'nongli': '二月廿九'}, {'date': '2017-03-27', 'week': '一', 'info': {'dawn': ['0', '晴', '2', '西南風', '微風', '18:36'], 'night': ['7', '小雨', '3', '南風', '微風', '18:37'], 'day': ['0', '晴', '15', '南風', '微風', '06:11']}, 'nongli': '二月三十'}, {'date': '2017-03-28', 'week': '二', 'info': {'dawn': ['7', '小雨', '3', '南風', '微風', '18:37'], 'night': ['0', '晴', '3', '南風', '微風', '18:38'], 'day': ['1', '多云', '15', '南風', '微風', '06:09']}, 'nongli': '三月初一'}, {'date': '2017-03-29', 'week': '三', 'info': {'dawn': ['0', '晴', '3', '南風', '微風', '18:38'], 'night': ['0', '晴', '3', '北風', '微風', '18:39'], 'day': ['0', '晴', '18', '南風', '微風', '06:08']}, 'nongli': '三月初二'}, {'date': '2017-03-30', 'week': '四', 'info': {'dawn': ['0', '晴', '3', '北風', '微風', '18:39'], 'night': ['0', '晴', '3', '北風', '微風', '18:40'], 'day': ['0', '晴', '17', '北風', '微風', '06:06']}, 'nongli': '三月初三'}], 'isForeign': 0, 'pm25': {'pm25': {'des': '空氣很好,可以外出活動', 'curPm': '34', 'level': '1', 'pm10': '26', 'pm25': '14', 'quality': '優(yōu)'}, 'show_desc': '0', 'key': 'Baoding', 'dateTime': '2017年03月26日16時', 'cityName': '保定'}, 'realtime': {'city_name': '保定', 'weather': {'info': '晴', 'img': '0', 'humidity': '27', 'temperature': '13'}, 'week': '0', 'wind': {'windspeed': None, 'power': '3級', 'offset': None, 'direct': '西風'}, 'city_code': '101090201', 'date': '2017-03-26', 'dataUptime': '1490517362', 'time': '16:00:00', 'moon': '二月廿九'}}
相同的方法取 data['result']['weather'] 這又是一個元組,
[{'nongli': '二月廿九', 'info': {'night': ['0', '晴', '2', '西南風', '微風', '18:36'], 'dawn': None, 'day': ['0', '晴', '17', '西北風', '3-4 級', '06:12']}, 'week': '日', 'date': '2017-03-26'}, {'nongli': '二月三十', 'info': {'night': ['7', '小雨', '3', '南風', '微風', '18:37'], 'dawn': ['0', '晴', '2', '西南風', '微風', '18:36'], 'day': ['0', '晴', '15', '南風', '微風', '06:11']}, 'week': '一', 'date': '2017-03-27'}, {'nongli': '三月初一', 'info': {'night': ['0', '晴', '3', '南風', '微風', '18:38'], 'dawn': ['7', '小雨', '3', '南風', '微風', '18:37'], 'day': ['1', '多云', '15', '南風', '微風', '06:09']}, 'week': '二', 'date': '2017-03-28'}, {'nongli': '三月初二', 'info': {'night': ['0', '晴', '3', '北風', '微風', '18:39'], 'dawn': ['0', '晴', '3', '南風', '微風', '18:38'], 'day': ['0', '晴', '18', '南風', '微風', '06:08']}, 'week': '三', 'date': '2017-03-29'}, {'nongli': '三月初三', 'info': {'night': ['0', '晴', '3', '北風', '微風', '18:40'], 'dawn': ['0', '晴', '3', '北風', '微風', '18:39'], 'day': ['0', '晴', '17', '北風', '微風', '06:06']}, 'week': '四', 'date': '2017-03-30'}]
接著取元組里的字典,逐步拆分即可獲得想要的數據。

以上就是本文的全部內容,希望本文的內容對大家的學習或者工作能帶來一定的幫助,同時也希望多多支持服務器之家!

原文鏈接:http://www.cnblogs.com/mryrs/p/6623272.html

延伸 · 閱讀

精彩推薦
Weibo Article 1 Weibo Article 2 Weibo Article 3 Weibo Article 4 Weibo Article 5 Weibo Article 6 Weibo Article 7 Weibo Article 8 Weibo Article 9 Weibo Article 10 Weibo Article 11 Weibo Article 12 Weibo Article 13 Weibo Article 14 Weibo Article 15 Weibo Article 16 Weibo Article 17 Weibo Article 18 Weibo Article 19 Weibo Article 20 Weibo Article 21 Weibo Article 22 Weibo Article 23 Weibo Article 24 Weibo Article 25 Weibo Article 26 Weibo Article 27 Weibo Article 28 Weibo Article 29 Weibo Article 30 Weibo Article 31 Weibo Article 32 Weibo Article 33 Weibo Article 34 Weibo Article 35 Weibo Article 36 Weibo Article 37 Weibo Article 38 Weibo Article 39 Weibo Article 40
主站蜘蛛池模板: 久久99精品一区二区三区 | 国产精品第十页 | 亚洲国产综合在线 | 黄色国产免费看 | 偷拍自拍亚洲欧美 | 久久精品国产91精品亚洲高清 | 欧美黄色电影在线 | 久久精品亚洲精品国产欧美kt∨ | 日韩美女乱淫aaa高清视频 | 日韩欧美中文在线观看 | 91久久久久久久久久久久久久久久 | 亚洲欧美日韩国产综合 | 日韩欧美在线综合 | 欧美天堂在线观看 | 久久久久久久一区 | 日韩欧美一区二区三区在线观看 | 亚洲精品成人 | 久久精品电影网 | 国产精品免费久久久久久久久久中文 | 欧美aⅴ | 狠狠色狠狠色合久久伊人 | 最新国产视频 | 亚洲区视频 | 最近2019中文字幕大全视频10 | 国产精一区 | 亚洲精品在线视频 | 亚洲国产二区 | 亚洲欧美日韩精品久久亚洲区 | 91精品视频在线播放 | 久久午夜电影 | 午夜爽爽爽 | 欧美黄色一级 | 亚洲成人一区二区三区四区 | 亚洲高清视频在线观看 | 欧美日韩国产精品 | 欧美淫片 | 亚洲字幕网 | 日韩不卡一区二区三区 | 亚洲一区在线观看视频 | 亚洲国产精品自拍视频 | 91精品一区二区三区久久久久久 |