一、紅黑樹的概念
紅黑樹(Red Black Tree),是在計算機(jī)科學(xué)中用到的一種數(shù)據(jù)結(jié)構(gòu),是一種二叉搜索樹,但在每個結(jié)點(diǎn)上增加一個存儲位表示結(jié)點(diǎn)的顏色,可以是Red或Black。 通過對任何一條從根到葉子的路徑上各個結(jié)點(diǎn)著色方式的限制,紅黑樹確保沒有一條路徑會比其他路徑長出倆倍,因而是接近平衡的。
二、紅黑樹的性質(zhì)
1. 每個結(jié)點(diǎn)不是紅色就是黑色;
2. 根節(jié)點(diǎn)是黑色的;
3. 如果一個節(jié)點(diǎn)是紅色的,則它的兩個孩子結(jié)點(diǎn)是黑色的;
4. 對于每個結(jié)點(diǎn),從該結(jié)點(diǎn)到其所有后代葉結(jié)點(diǎn)的簡單路徑上,均 包含相同數(shù)目的黑色結(jié)點(diǎn);
5. 每個葉子結(jié)點(diǎn)都是黑色的(此處的葉子結(jié)點(diǎn)指的是空結(jié)點(diǎn));
滿足上面的性質(zhì),紅黑樹就能保證其最長路徑中節(jié)點(diǎn)個數(shù)不會超過最短路徑節(jié)點(diǎn)個數(shù)的兩倍。
三、紅黑樹節(jié)點(diǎn)的定義
enum Colour //紅黑樹顏色枚舉 { RED, BLACK, }; template<class K, class V> struct RBTreeNode //節(jié)點(diǎn)結(jié)構(gòu)體 { RBTreeNode<K, V>* _left; //左子樹 RBTreeNode<K, V>* _right; //右子樹 RBTreeNode<K, V>* _parent; //父節(jié)點(diǎn) pair<K, V> _kv; Colour _col; RBTreeNode(const pair<K, V>& kv) //構(gòu)造函數(shù) : _left(nullptr) , _right(nullptr) , _parent(nullptr) , _kv(kv) , _col(RED) {} };
插入時默認(rèn)為紅色節(jié)點(diǎn),因?yàn)榧t色可能會破壞規(guī)則3,黑色一定會破壞規(guī)則4,所以默認(rèn)紅色。
四、紅黑樹結(jié)構(gòu)
為了后續(xù)實(shí)現(xiàn)關(guān)聯(lián)式容器簡單,紅黑樹的實(shí)現(xiàn)中增加一個頭結(jié)點(diǎn),因?yàn)楦?jié)點(diǎn)必須為黑色,為了與根節(jié)點(diǎn)進(jìn)行區(qū)分,將頭結(jié)點(diǎn)給成黑色,并且讓頭結(jié)點(diǎn)的 parent 域指向紅黑樹的根節(jié)點(diǎn),left域指向紅黑樹中最小的節(jié)點(diǎn),right域指向紅黑樹中最大的節(jié)點(diǎn),如下:
五、 紅黑樹的插入操作
紅黑樹是在二叉搜索樹的基礎(chǔ)上加上其平衡限制條件,因此紅黑樹的插入可分為兩步:
1. 按照二叉搜索的樹規(guī)則插入新節(jié)點(diǎn):
pair<Node*, bool> Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); _root->_col = BLACK; return make_pair(_root, true); } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else { return make_pair(cur, false); } } Node* newNode = new Node(kv); newNode->_col = RED; if (parent->_kv.first > kv.first) { parent->_left = newNode; newNode->_parent = parent; } else { parent->_right = newNode; newNode->_parent = parent; } cur = newNode; while (parent && parent->_col == RED) //違反規(guī)則三 { } _root->_col = BLACK; //插入結(jié)束再次將根變?yōu)楹? return make_pair(cur, true); }
2. 檢測新節(jié)點(diǎn)插入后,紅黑樹的性質(zhì)是否造到破壞
因?yàn)樾鹿?jié)點(diǎn)的默認(rèn)顏色是紅色,因此:如果其雙親節(jié)點(diǎn)的顏色是黑色,沒有違反紅黑樹任何性質(zhì),則不需要調(diào)整;但當(dāng)新插入節(jié)點(diǎn)的雙親節(jié)點(diǎn)顏色為紅色時,就違反了性質(zhì)三不能有連在一起的紅色節(jié)點(diǎn),此時需要對紅黑樹分情況來討論:
cur為當(dāng)前節(jié)點(diǎn),p為父節(jié)點(diǎn),g為祖父節(jié)點(diǎn),u為叔叔節(jié)點(diǎn)
情況一:cur為紅,p為紅,g為黑,u存在且為紅
如果g是根節(jié)點(diǎn),調(diào)整完成后,需要將g改為黑色,如果g是子樹,g一定有父節(jié)點(diǎn),且如果為紅色呃,繼續(xù)向上調(diào)整。
將p,u改為黑,g改為紅,然后把g當(dāng)成cur,繼續(xù)向上調(diào)整 。
情況二: cur為紅,p為紅,g為黑,u不存在/u為黑
u的情況有兩種:
1.如果u節(jié)點(diǎn)不存在,則cur一定是新插入節(jié)點(diǎn),因?yàn)槿绻鹀ur不是新插入節(jié)點(diǎn),則cur和p一定有一個節(jié)點(diǎn)的顏色是黑色,就不滿足性質(zhì)4:每條路徑黑色節(jié)點(diǎn)個數(shù)相同。
2.如果u節(jié)點(diǎn)存在,則其一定是黑色的,那么cur節(jié)點(diǎn)原來的顏色一定是黑色的,現(xiàn)在看到其是紅色的原因是因?yàn)閏ur的子樹在調(diào)整的過程中將cur節(jié)點(diǎn)的顏色由黑色改成紅色。
p為g的左孩子,cur為p的左孩子,則進(jìn)行右單旋轉(zhuǎn);
p為g的右孩子,cur為p的右孩子,則進(jìn)行左單旋轉(zhuǎn)。
p變黑,g變紅。
情況三: cur為紅,p為紅,g為黑,u不存在/u為黑
需要進(jìn)行雙旋。
代碼實(shí)現(xiàn):
while (parent && parent->_col == RED) //違反規(guī)則三 { Node* grandfather = parent->_parent; if (parent == grandfather->_left) //左半邊 { Node* uncle = parent->_right; if (uncle && uncle->_col == red) //情況一 { uncle->_col = BLACK; grandfather->_col = RED; parent->_col = BLACK; cur = grandfather; //迭代 parent = cur->_parent; } else //情況2.3 { if (cur == parent->_left) //單側(cè) { RotateR(grandfather); grandfather->_col = RED; parent->_col = BLACK; } else //折 { RotateL(parent); RotateR(grandfather); cur->_col = BLACK; grandfather->_col = RED; } break; //黑色數(shù)量無變化,不需要向上 } } else // parent == grandfather->_right { Node* uncle = parent->_left; if (uncle && uncle->_col == red) //情況一 { uncle->_col = BLACK; grandfather->_col = RED; parent->_col = BLACK; cur = grandfather; //迭代 parent = cur->_parent; } else //情況2.3 { if (cur == parent->_right) //單側(cè) { RotateL(grandfather); grandfather->_col = RED; parent->_col = BLACK; } else //折 { RotateR(parent); RotateL(grandfather); cur->_col = BLACK; grandfather->_col = RED; } break; } } }
六、代碼
#pragma once #include<iostream> #include<assert.h> using namespace std; enum Colour //紅黑樹顏色枚舉 { RED, BLACK, }; template<class K, class V> struct RBTreeNode //節(jié)點(diǎn)結(jié)構(gòu)體 { RBTreeNode<K, V>* _left; //左子樹 RBTreeNode<K, V>* _right; //右子樹 RBTreeNode<K, V>* _parent; //父節(jié)點(diǎn) pair<K, V> _kv; Colour _col; RBTreeNode(const pair<K, V>& kv) //構(gòu)造函數(shù) : _left(nullptr) , _right(nullptr) , _parent(nullptr) , _kv(kv) , _col(RED) {} }; template<class K, class V> class RBTree { typedef RBTreeNode<K, V> Node; private: Node* _root; void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; Node* parentP = parent->_parent; if (subLR) //左子樹的右子樹連接到父的右 subLR->_parent = parent; parent->_left = subLR; subL->_right = parent; parent->_parent = subL; // 如果parent是根節(jié)點(diǎn),根新指向根節(jié)點(diǎn)的指針 if (parent == _root) { _root = subL; subL->_parent = nullptr; } else { // 如果parent是子樹,可能是其雙親的左子樹,也可能是右子樹 if (parentP->_left == parent) parentP->_left = subL; else parentP->_right = subL; subL->_parent = parentP; } } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; Node* parentP = parent->_parent; if (subRL) subRL->_parent = parent; parent->_right = subRL; subR->_left = parent; parent->_parent = subR; // 如果parent是根節(jié)點(diǎn),根新指向根節(jié)點(diǎn)的指針 if (parent == _root) { _root = subR; subR->_parent = nullptr; } else { // 如果parent是子樹,可能是其雙親的左子樹,也可能是右子樹 if (parentP->_left == parent) parentP->_left = subR; else parentP->_right = subR; subR->_parent = parentP; } } void _Destory(Node* root) { if (root == nullptr) { return; } _Destory(root->_left); _Destory(root->_right); delete root; } public: RBTree() :_root(nullptr) {} ~RBTree() { _Destory(_root); _root = nullptr; } Node* Find(const K& key) { Node* cur = _root; while (cur) { if (cur->_kv.first > key) { cur = cur->_left; } else if (cur->_kv < key) { cur = cur->_right; } else { return cur; } } return nullptr; } pair<Node*, bool> Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); _root->_col = BLACK; return make_pair(_root, true); } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else { return make_pair(cur, false); } } Node* newNode = new Node(kv); newNode->_col = RED; if (parent->_kv.first > kv.first) { parent->_left = newNode; newNode->_parent = parent; } else { parent->_right = newNode; newNode->_parent = parent; } cur = newNode; while (parent && parent->_col == RED) //違反規(guī)則三 { Node* grandfather = parent->_parent; if (parent == grandfather->_left) //左半邊 { Node* uncle = parent->_right; if (uncle && uncle->_col == red) //情況一 { uncle->_col = BLACK; grandfather->_col = RED; parent->_col = BLACK; cur = grandfather; //迭代 parent = cur->_parent; } else //情況2.3 { if (cur == parent->_left) //單側(cè) { RotateR(grandfather); grandfather->_col = RED; parent->_col = BLACK; } else //折 { RotateL(parent); RotateR(grandfather); cur->_col = BLACK; grandfather->_col = RED; } break; //黑色數(shù)量無變化,不需要向上 } } else // parent == grandfather->_right { Node* uncle = parent->_left; if (uncle && uncle->_col == red) //情況一 { uncle->_col = BLACK; grandfather->_col = RED; parent->_col = BLACK; cur = grandfather; //迭代 parent = cur->_parent; } else //情況2.3 { if (cur == parent->_right) //單側(cè) { RotateL(grandfather); grandfather->_col = RED; parent->_col = BLACK; } else //折 { RotateR(parent); RotateL(grandfather); cur->_col = BLACK; grandfather->_col = RED; } break; } } } _root->_col = BLACK; //插入結(jié)束再次將根變?yōu)楹? return make_pair(newNode, true); } };
總結(jié)
本文對紅黑樹進(jìn)行了介紹,并對構(gòu)造,插入,查找進(jìn)行了模擬實(shí)現(xiàn)。
以上就是C++ STL容器詳解之紅黑樹部分模擬實(shí)現(xiàn)的詳細(xì)內(nèi)容,更多關(guān)于C++ STL紅黑樹實(shí)現(xiàn)的資料請關(guān)注服務(wù)器之家其它相關(guān)文章!
原文鏈接:https://blog.csdn.net/RMA515T/article/details/121654417