Java動態代理分析及理解
代理設計模式
定義:為其他對象提供一種代理以控制對這個對象的訪問。
動態代理使用
java動態代理機制以巧妙的方式實現了代理模式的設計理念。
代理模式示例代碼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
public interface Subject { public void doSomething(); } public class RealSubject implements Subject { public void doSomething() { System.out.println( "call doSomething()" ); } } public class ProxyHandler implements InvocationHandler { private Object proxied; public ProxyHandler( Object proxied ) { this .proxied = proxied; } public Object invoke( Object proxy, Method method, Object[] args ) throws Throwable { //在轉調具體目標對象之前,可以執行一些功能處理 //轉調具體目標對象的方法 return method.invoke( proxied, args); //在轉調具體目標對象之后,可以執行一些功能處理 } } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy; import sun.misc.ProxyGenerator; import java.io.*; public class DynamicProxy { public static void main( String args[] ) { RealSubject real = new RealSubject(); Subject proxySubject = (Subject)Proxy.newProxyInstance(Subject. class .getClassLoader(), new Class[]{Subject. class }, new ProxyHandler(real)); proxySubject.doSomething(); //write proxySubject class binary data to file createProxyClassFile(); } public static void createProxyClassFile() { String name = "ProxySubject" ; byte [] data = ProxyGenerator.generateProxyClass( name, new Class[] { Subject. class } ); try { FileOutputStream out = new FileOutputStream( name + ".class" ); out.write( data ); out.close(); } catch ( Exception e ) { e.printStackTrace(); } } } |
動態代理內部實現
首先來看看類Proxy的代碼實現 Proxy的主要靜態變量
1
2
3
4
5
6
7
8
9
10
11
|
// 映射表:用于維護類裝載器對象到其對應的代理類緩存 private static Map loaderToCache = new WeakHashMap(); // 標記:用于標記一個動態代理類正在被創建中 private static Object pendingGenerationMarker = new Object(); // 同步表:記錄已經被創建的動態代理類類型,主要被方法 isProxyClass 進行相關的判斷 private static Map proxyClasses = Collections.synchronizedMap( new WeakHashMap()); // 關聯的調用處理器引用 protected InvocationHandler h; |
Proxy的構造方法
1
2
3
4
5
|
// 由于 Proxy 內部從不直接調用構造函數,所以 private 類型意味著禁止任何調用 private Proxy() {} // 由于 Proxy 內部從不直接調用構造函數,所以 protected 意味著只有子類可以調用 protected Proxy(InvocationHandler h) { this .h = h;} |
Proxy靜態方法newProxyInstance
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
public static Object newProxyInstance(ClassLoader loader, Class<?>[]interfaces,InvocationHandler h) throws IllegalArgumentException { // 檢查 h 不為空,否則拋異常 if (h == null ) { throw new NullPointerException(); } // 獲得與指定類裝載器和一組接口相關的代理類類型對象 Class cl = getProxyClass(loader, interfaces); // 通過反射獲取構造函數對象并生成代理類實例 try { Constructor cons = cl.getConstructor(constructorParams); return (Object) cons.newInstance( new Object[] { h }); } catch (NoSuchMethodException e) { throw new InternalError(e.toString()); } catch (IllegalAccessException e) { throw new InternalError(e.toString()); } catch (InstantiationException e) { throw new InternalError(e.toString()); } catch (InvocationTargetException e) { throw new InternalError(e.toString()); } } |
類Proxy的getProxyClass方法調用ProxyGenerator的 generateProxyClass方法產生ProxySubject.class的二進制數據:
1
|
public static byte [] generateProxyClass( final String name, Class[] interfaces) |
我們可以import sun.misc.ProxyGenerator,調用 generateProxyClass方法產生binary data,然后寫入文件,最后通過反編譯工具來查看內部實現原理。 反編譯后的ProxySubject.java Proxy靜態方法newProxyInstance
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
import java.lang.reflect.*; public final class ProxySubject extends Proxy implements Subject { private static Method m1; private static Method m0; private static Method m3; private static Method m2; public ProxySubject(InvocationHandler invocationhandler) { super (invocationhandler); } public final boolean equals(Object obj) { try { return ((Boolean) super .h.invoke( this , m1, new Object[] { obj })).booleanValue(); } catch (Error _ex) { } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final int hashCode() { try { return ((Integer) super .h.invoke( this , m0, null )).intValue(); } catch (Error _ex) { } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final void doSomething() { try { super .h.invoke( this , m3, null ); return ; } catch (Error _ex) { } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final String toString() { try { return (String) super .h.invoke( this , m2, null ); } catch (Error _ex) { } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } static { try { m1 = Class.forName( "java.lang.Object" ).getMethod( "equals" , new Class[] { Class.forName( "java.lang.Object" ) }); m0 = Class.forName( "java.lang.Object" ).getMethod( "hashCode" , new Class[ 0 ]); m3 = Class.forName( "Subject" ).getMethod( "doSomething" , new Class[ 0 ]); m2 = Class.forName( "java.lang.Object" ).getMethod( "toString" , new Class[ 0 ]); } catch (NoSuchMethodException nosuchmethodexception) { throw new NoSuchMethodError(nosuchmethodexception.getMessage()); } catch (ClassNotFoundException classnotfoundexception) { throw new NoClassDefFoundError(classnotfoundexception.getMessage()); } } } |
ProxyGenerator內部是如何生成class二進制數據,可以參考源代碼。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
private byte [] generateClassFile() { /* * Record that proxy methods are needed for the hashCode, equals, * and toString methods of java.lang.Object. This is done before * the methods from the proxy interfaces so that the methods from * java.lang.Object take precedence over duplicate methods in the * proxy interfaces. */ addProxyMethod(hashCodeMethod, Object.class); addProxyMethod(equalsMethod, Object.class); addProxyMethod(toStringMethod, Object.class); /* * Now record all of the methods from the proxy interfaces, giving * earlier interfaces precedence over later ones with duplicate * methods. */ for (int i = 0; i < interfaces.length; i++) { Method[] methods = interfaces[i].getMethods(); for (int j = 0; j < methods.length; j++) { addProxyMethod(methods[j], interfaces[i]); } } /* * For each set of proxy methods with the same signature, * verify that the methods' return types are compatible. */ for (List<ProxyMethod> sigmethods : proxyMethods.values()) { checkReturnTypes(sigmethods); } /* ============================================================ * Step 2: Assemble FieldInfo and MethodInfo structs for all of * fields and methods in the class we are generating. */ try { methods.add(generateConstructor()); for (List<ProxyMethod> sigmethods : proxyMethods.values()) { for (ProxyMethod pm : sigmethods) { // add static field for method's Method object fields.add(new FieldInfo(pm.methodFieldName, "Ljava/lang/reflect/Method;", ACC_PRIVATE | ACC_STATIC)); // generate code for proxy method and add it methods.add(pm.generateMethod()); } } methods.add(generateStaticInitializer()); } catch (IOException e) { throw new InternalError("unexpected I/O Exception"); } /* ============================================================ * Step 3: Write the final class file. */ /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getClass(dotToSlash(className)); cp.getClass(superclassName); for (int i = 0; i < interfaces.length; i++) { cp.getClass(dotToSlash(interfaces[i].getName())); } /* * Disallow new constant pool additions beyond this point, since * we are about to write the final constant pool table. */ cp.setReadOnly(); ByteArrayOutputStream bout = new ByteArrayOutputStream(); DataOutputStream dout = new DataOutputStream(bout); try { /* * Write all the items of the "ClassFile" structure. * See JVMS section 4.1. */ // u4 magic; dout.writeInt( 0xCAFEBABE ); // u2 minor_version; dout.writeShort(CLASSFILE_MINOR_VERSION); // u2 major_version; dout.writeShort(CLASSFILE_MAJOR_VERSION); cp.write(dout); // (write constant pool) // u2 access_flags; dout.writeShort(ACC_PUBLIC | ACC_FINAL | ACC_SUPER); // u2 this_class; dout.writeShort(cp.getClass(dotToSlash(className))); // u2 super_class; dout.writeShort(cp.getClass(superclassName)); // u2 interfaces_count; dout.writeShort(interfaces.length); // u2 interfaces[interfaces_count]; for ( int i = 0 ; i < interfaces.length; i++) { dout.writeShort(cp.getClass( dotToSlash(interfaces[i].getName()))); } // u2 fields_count; dout.writeShort(fields.size()); // field_info fields[fields_count]; for (FieldInfo f : fields) { f.write(dout); } // u2 methods_count; dout.writeShort(methods.size()); // method_info methods[methods_count]; for (MethodInfo m : methods) { m.write(dout); } // u2 attributes_count; dout.writeShort( 0 ); // (no ClassFile attributes for proxy classes) } catch (IOException e) { throw new InternalError( "unexpected I/O Exception" ); } return bout.toByteArray(); |
總結
一個典型的動態代理創建對象過程可分為以下四個步驟:
1、通過實現InvocationHandler接口創建自己的調用處理器 IvocationHandler handler = new InvocationHandlerImpl(...);
2、通過為Proxy類指定ClassLoader對象和一組interface創建動態代理類
Class clazz = Proxy.getProxyClass(classLoader,new Class[]{...});
3、通過反射機制獲取動態代理類的構造函數,其參數類型是調用處理器接口類型
Constructor constructor = clazz.getConstructor(new Class[]{InvocationHandler.class});
4、通過構造函數創建代理類實例,此時需將調用處理器對象作為參數被傳入
Interface Proxy = (Interface)constructor.newInstance(new Object[] (handler));
為了簡化對象創建過程,Proxy類中的newInstance方法封裝了2~4,只需兩步即可完成代理對象的創建。
生成的ProxySubject繼承Proxy類實現Subject接口,實現的Subject的方法實際調用處理器的invoke方法,而invoke方法利用反射調用的是被代理對象的的方法(Object result=method.invoke(proxied,args))
美中不足
誠然,Proxy已經設計得非常優美,但是還是有一點點小小的遺憾之處,那就是它始終無法擺脫僅支持interface代理的桎梏,因為它的設計注定了這個遺憾。回想一下那些動態生成的代理類的繼承關系圖,它們已經注定有一個共同的父類叫Proxy。Java的繼承機制注定了這些動態代理類們無法實現對class的動態代理,原因是多繼承在Java中本質上就行不通。有很多條理由,人們可以否定對 class代理的必要性,但是同樣有一些理由,相信支持class動態代理會更美好。接口和類的劃分,本就不是很明顯,只是到了Java中才變得如此的細化。如果只從方法的聲明及是否被定義來考量,有一種兩者的混合體,它的名字叫抽象類。實現對抽象類的動態代理,相信也有其內在的價值。此外,還有一些歷史遺留的類,它們將因為沒有實現任何接口而從此與動態代理永世無緣。如此種種,不得不說是一個小小的遺憾。但是,不完美并不等于不偉大,偉大是一種本質,Java動態代理就是佐例。
感謝閱讀,希望能幫助到大家,謝謝大家對本站的支持!
原文鏈接:http://blog.csdn.net/qq_37810594/article/details/71450830