国产片侵犯亲女视频播放_亚洲精品二区_在线免费国产视频_欧美精品一区二区三区在线_少妇久久久_在线观看av不卡

服務器之家:專注于服務器技術及軟件下載分享
分類導航

Mysql|Sql Server|Oracle|Redis|MongoDB|PostgreSQL|Sqlite|DB2|mariadb|Access|數據庫技術|

服務器之家 - 數據庫 - Redis - Redis為什么變慢了?教你定位與排查分析

Redis為什么變慢了?教你定位與排查分析

2021-04-24 01:21高效運維kaito Redis

這篇文章我們就來分析一下 Redis 在使用過程中,經常會遇到的延遲問題以及如何定位和分析。

Redis為什么變慢了?教你定位與排查分析

Redis 作為內存數據庫,擁有非常高的性能,單個實例的QPS能夠達到10W左右。但我們在使用Redis時,經常時不時會出現訪問延遲很大的情況,如果你不知道 Redis 的內部實現原理,在排查問題時就會一頭霧水。

很多時候,Redis 出現訪問延遲變大,都與我們的使用不當或運維不合理導致的。

這篇文章我們就來分析一下 Redis 在使用過程中,經常會遇到的延遲問題以及如何定位和分析。

使用復雜度高的命令

 

如果在使用Redis時,發現訪問延遲突然增大,如何進行排查?

首先,第一步,建議你去查看一下Redis的慢日志。Redis提供了慢日志命令的統計功能,我們通過以下設置,就可以查看有哪些命令在執行時延遲比較大。

首先設置Redis的慢日志閾值,只有超過閾值的命令才會被記錄,這里的單位是微妙,例如設置慢日志的閾值為5毫秒,同時設置只保留最近1000條慢日志記錄:

  1. # 命令執行超過5毫秒記錄慢日志 
  2.  
  3. CONFIG SET slowlog-log-slower-than 5000 
  4.  
  5. # 只保留最近1000條慢日志 
  6.  
  7. CONFIG SET slowlog-max-len 1000 

設置完成之后,所有執行的命令如果延遲大于5毫秒,都會被Redis記錄下來,我們執行SLOWLOG get 5查詢最近5條慢日志:

  1. 127.0.0.1:6379> SLOWLOG get 5 
  2.  
  3. 11) (integer) 32693 # 慢日志ID 
  4.  
  5. 2) (integer) 1593763337 # 執行時間 
  6.  
  7. 3) (integer) 5299 # 執行耗時(微妙) 
  8.  
  9. 41"LRANGE" # 具體執行的命令和參數 
  10.  
  11. 2"user_list_2000" 
  12.  
  13. 3"0" 
  14.  
  15. 4"-1" 
  16.  
  17. 21) (integer) 32692 
  18.  
  19. 2) (integer) 1593763337 
  20.  
  21. 3) (integer) 5044 
  22.  
  23. 41"GET" 
  24.  
  25. 2"book_price_1000" 
  26.  
  27. ... 

通過查看慢日志記錄,我們就可以知道在什么時間執行哪些命令比較耗時,如果你的業務經常使用O(N)以上復雜度的命令,例如sort、sunion、zunionstore,或者在執行O(N)命令時操作的數據量比較大,這些情況下Redis處理數據時就會很耗時。

如果你的服務請求量并不大,但Redis實例的CPU使用率很高,很有可能是使用了復雜度高的命令導致的。

解決方案就是,不使用這些復雜度較高的命令,并且一次不要獲取太多的數據,每次盡量操作少量的數據,讓Redis可以及時處理返回。

存儲 bigkey

 

如果查詢慢日志發現,并不是復雜度較高的命令導致的,例如都是SET、DELETE操作出現在慢日志記錄中,那么你就要懷疑是否存在Redis寫入了bigkey的情況。

Redis在寫入數據時,需要為新的數據分配內存,當從Redis中刪除數據時,它會釋放對應的內存空間。

如果一個key寫入的數據非常大,Redis在分配內存時也會比較耗時。同樣的,當刪除這個key的數據時,釋放內存也會耗時比較久。

你需要檢查你的業務代碼,是否存在寫入bigkey的情況,需要評估寫入數據量的大小,業務層應該避免一個key存入過大的數據量。

那么有沒有什么辦法可以掃描現在Redis中是否存在bigkey的數據嗎?

Redis也提供了掃描bigkey的方法:

  1. redis-cli -h $host -p $port --bigkeys -i 0.01 

使用上面的命令就可以掃描出整個實例key大小的分布情況,它是以類型維度來展示的。

需要注意的是當我們在線上實例進行bigkey掃描時,Redis的QPS會突增,為了降低掃描過程中對Redis的影響,我們需要控制掃描的頻率,使用-i參數控制即可,它表示掃描過程中每次掃描的時間間隔,單位是秒。

使用這個命令的原理,其實就是Redis在內部執行scan命令,遍歷所有key,然后針對不同類型的key執行strlen、llen、hlen、scard、zcard來獲取字符串的長度以及容器類型(list/dict/set/zset)的元素個數。

而對于容器類型的key,只能掃描出元素最多的key,但元素最多的key不一定占用內存最多,這一點需要我們注意下。不過使用這個命令一般我們是可以對整個實例中key的分布情況有比較清晰的了解。

針對 bigkey 的問題,Redis官方在4.0版本推出了lazy-free的機制,用于異步釋放bigkey的內存,降低對Redis性能的影響。即使這樣,我們也不建議使用bigkey,bigkey 在集群的遷移過程中,也會影響到遷移的性能,這個后面在介紹集群相關的文章時,會再詳細介紹到。

集中過期

 

有時你會發現,平時在使用Redis時沒有延時比較大的情況,但在某個時間點突然出現一波延時,而且報慢的時間點很有規律,例如某個整點,或者間隔多久就會發生一次。

如果出現這種情況,就需要考慮是否存在大量key集中過期的情況。

如果有大量的key在某個固定時間點集中過期,在這個時間點訪問Redis時,就有可能導致延遲增加。

Redis 的過期策略采用主動過期+懶惰過期兩種策略:

  • 主動過期:Redis內部維護一個定時任務,默認每隔100毫秒會從過期字典中隨機取出20個key,刪除過期的key,如果過期key的比例超過了25%,則繼續獲取20個key,刪除過期的key,循環往復,直到過期key的比例下降到25%或者這次任務的執行耗時超過了25毫秒,才會退出循環
  • 懶惰過期:只有當訪問某個key時,才判斷這個key是否已過期,如果已經過期,則從實例中刪除

注意,Redis的主動過期的定時任務,也是在Redis主線程中執行的,也就是說如果在執行主動過期的過程中,出現了需要大量刪除過期key的情況,那么在業務訪問時,必須等這個過期任務執行結束,才可以處理業務請求。此時就會出現,業務訪問延時增大的問題,最大延遲為25毫秒。

而且這個訪問延遲的情況,不會記錄在慢日志里。慢日志中只記錄真正執行某個命令的耗時,Redis主動過期策略執行在操作命令之前,如果操作命令耗時達不到慢日志閾值,它是不會計算在慢日志統計中的,但我們的業務卻感到了延遲增大。

此時你需要檢查你的業務,是否真的存在集中過期的代碼,一般集中過期使用的命令是expireat或pexpireat命令,在代碼中搜索這個關鍵字就可以了。

如果你的業務確實需要集中過期掉某些key,又不想導致Redis發生抖動,有什么優化方案?

解決方案是,在集中過期時增加一個隨機時間,把這些需要過期的key的時間打散即可。

偽代碼可以這么寫:

這樣 Redis 在處理過期時,不會因為集中刪除key導致壓力過大,阻塞主線程。

另外,除了業務使用需要注意此問題之外,還可以通過運維手段來及時發現這種情況。

做法是我們需要把Redis的各項運行數據監控起來,執行info可以拿到所有的運行數據,在這里我們需要重點關注expired_keys這一項,它代表整個實例到目前為止,累計刪除過期key的數量。

我們需要對這個指標監控,當在很短時間內這個指標出現突增時,需要及時報警出來,然后與業務報慢的時間點對比分析,確認時間是否一致,如果一致,則可以認為確實是因為這個原因導致的延遲增大。

實例內存達到上限

 

有時我們把 Redis 當做純緩存使用,就會給實例設置一個內存上限maxmemory,然后開啟LRU淘汰策略。

當實例的內存達到了 maxmemory 后,你會發現之后的每次寫入新的數據,有可能變慢了。

導致變慢的原因是,當Redis內存達到maxmemory后,每次寫入新的數據之前,必須先踢出一部分數據,讓內存維持在maxmemory之下。

這個踢出舊數據的邏輯也是需要消耗時間的,而具體耗時的長短,要取決于配置的淘汰策略:

  • allkeys-lru:不管key是否設置了過期,淘汰最近最少訪問的key
  • volatile-lru:只淘汰最近最少訪問并設置過期的key
  • allkeys-random:不管key是否設置了過期,隨機淘汰
  • volatile-random:只隨機淘汰有設置過期的key
  • allkeys-ttl:不管key是否設置了過期,淘汰即將過期的key
  • noeviction:不淘汰任何key,滿容后再寫入直接報錯
  • allkeys-lfu:不管key是否設置了過期,淘汰訪問頻率最低的key(4.0+支持)
  • volatile-lfu:只淘汰訪問頻率最低的過期key(4.0+支持)

具體使用哪種策略,需要根據業務場景來決定。

我們最常使用的一般是 allkeys-lru或volatile-lru策略,它們的處理邏輯是,每次從實例中隨機取出一批key(可配置),然后淘汰一個最少訪問的key,之后把剩下的key暫存到一個池子中,繼續隨機取出一批key,并與之前池子中的key比較,再淘汰一個最少訪問的key。以此循環,直到內存降到maxmemory之下。

如果使用的是allkeys-random或volatile-random策略,那么就會快很多,因為是隨機淘汰,那么就少了比較key訪問頻率時間的消耗了,隨機拿出一批key后直接淘汰即可,因此這個策略要比上面的LRU策略執行快一些。

但以上這些邏輯都是在訪問Redis時,真正命令執行之前執行的,也就是它會影響我們訪問Redis時執行的命令。

另外,如果此時Redis實例中有存儲bigkey,那么在淘汰bigkey釋放內存時,這個耗時會更加久,延遲更大,這需要我們格外注意。

如果你的業務訪問量非常大,并且必須設置 maxmemory 限制實例的內存上限,同時面臨淘汰key導致延遲增大的的情況,要想緩解這種情況,除了上面說的避免存儲bigkey、使用隨機淘汰策略之外,也可以考慮拆分實例的方法來緩解,拆分實例可以把一個實例淘汰key的壓力分攤到多個實例上,可以在一定程度降低延遲。

fork 耗時嚴重

 

如果你的Redis開啟了自動生成RDB和AOF重寫功能,那么有可能在后臺生成RDB和AOF重寫時導致Redis的訪問延遲增大,而等這些任務執行完畢后,延遲情況消失。

遇到這種情況,一般就是執行生成RDB和AOF重寫任務導致的。

生成RDB和AOF都需要父進程fork出一個子進程進行數據的持久化,在fork執行過程中,父進程需要拷貝內存頁表給子進程,如果整個實例內存占用很大,那么需要拷貝的內存頁表會比較耗時,此過程會消耗大量的CPU資源,在完成fork之前,整個實例會被阻塞住,無法處理任何請求,如果此時CPU資源緊張,那么fork的時間會更長,甚至達到秒級。這會嚴重影響Redis的性能。

具體原理也可以參考我之前寫的文章:Redis持久化是如何做的?RDB和AOF對比分析。

我們可以執行info命令,查看最后一次fork執行的耗時latest_fork_usec,單位微妙。這個時間就是整個實例阻塞無法處理請求的時間。

除了因為備份的原因生成RDB之外,在主從節點第一次建立數據同步時,主節點也會生成RDB文件給從節點進行一次全量同步,這時也會對Redis產生性能影響。

要想避免這種情況,我們需要規劃好數據備份的周期,建議在從節點上執行備份,而且最好放在低峰期執行。如果對于丟失數據不敏感的業務,那么不建議開啟AOF和AOF重寫功能。

另外,fork的耗時也與系統有關,如果把Redis部署在虛擬機上,那么這個時間也會增大。所以使用Redis時建議部署在物理機上,降低fork的影響。

綁定 CPU

 

很多時候,我們在部署服務時,為了提高性能,降低程序在使用多個CPU時上下文切換的性能損耗,一般會采用進程綁定CPU的操作。

但在使用Redis時,我們不建議這么干,原因如下。

綁定CPU的Redis,在進行數據持久化時,fork出的子進程,子進程會繼承父進程的CPU使用偏好,而此時子進程會消耗大量的CPU資源進行數據持久化,子進程會與主進程發生CPU爭搶,這也會導致主進程的CPU資源不足訪問延遲增大。

所以在部署 Redis 進程時,如果需要開啟RDB和AOF重寫機制,一定不能進行CPU綁定操作!

AOF配合不合理

 

上面提到了,當執行AOF文件重寫時會因為fork執行耗時導致Redis延遲增大,除了這個之外,如果開啟AOF機制,設置的策略不合理,也會導致性能問題。

開啟AOF后,Redis會把寫入的命令實時寫入到文件中,但寫入文件的過程是先寫入內存,等內存中的數據超過一定閾值或達到一定時間后,內存中的內容才會被真正寫入到磁盤中。

AOF為了保證文件寫入磁盤的安全性,提供了3種刷盤機制:

appendfsync always:每次寫入都刷盤,對性能影響最大,占用磁盤IO比較高,數據安全性最高

appendfsync everysec:1秒刷一次盤,對性能影響相對較小,節點宕機時最多丟失1秒的數據

appendfsync no:按照操作系統的機制刷盤,對性能影響最小,數據安全性低,節點宕機丟失數據取決于操作系統刷盤機制

當使用第一種機制appendfsync always時,Redis每處理一次寫命令,都會把這個命令寫入磁盤,而且這個操作是在主線程中執行的。

內存中的的數據寫入磁盤,這個會加重磁盤的IO負擔,操作磁盤成本要比操作內存的代價大得多。如果寫入量很大,那么每次更新都會寫入磁盤,此時機器的磁盤IO就會非常高,拖慢Redis的性能,因此我們不建議使用這種機制。

與第一種機制對比,appendfsync everysec會每隔1秒刷盤,而appendfsync no取決于操作系統的刷盤時間,安全性不高。因此我們推薦使用appendfsync everysec這種方式,在最壞的情況下,只會丟失1秒的數據,但它能保持較好的訪問性能。

當然,對于有些業務場景,對丟失數據并不敏感,也可以不開啟AOF。

使用 Swap

 

如果你發現Redis突然變得非常慢,每次訪問的耗時都達到了幾百毫秒甚至秒級,那此時就檢查Redis是否使用到了Swap,這種情況下Redis基本上已經無法提供高性能的服務。

我們知道,操作系統提供了Swap機制,目的是為了當內存不足時,可以把一部分內存中的數據換到磁盤上,以達到對內存使用的緩沖。

但當內存中的數據被換到磁盤上后,訪問這些數據就需要從磁盤中讀取,這個速度要比內存慢太多!

尤其是針對Redis這種高性能的內存數據庫來說,如果Redis中的內存被換到磁盤上,對于Redis這種性能極其敏感的數據庫,這個操作時間是無法接受的。

我們需要檢查機器的內存使用情況,確認是否確實是因為內存不足導致使用到了Swap。

如果確實使用到了Swap,要及時整理內存空間,釋放出足夠的內存供Redis使用,然后釋放Redis的Swap,讓Redis重新使用內存。

釋放Redis的Swap過程通常要重啟實例,為了避免重啟實例對業務的影響,一般先進行主從切換,然后釋放舊主節點的Swap,重新啟動服務,待數據同步完成后,再切換回主節點即可。

可見,當Redis使用到Swap后,此時的Redis的高性能基本被廢掉,所以我們需要提前預防這種情況。

我們需要對Redis機器的內存和Swap使用情況進行監控,在內存不足和使用到Swap時及時報警出來,及時進行相應的處理。

網卡負載過高

 

如果以上產生性能問題的場景,你都規避掉了,而且Redis也穩定運行了很長時間,但在某個時間點之后開始,訪問Redis開始變慢了,而且一直持續到現在,這種情況是什么原因導致的?

之前我們就遇到這種問題,特點就是從某個時間點之后就開始變慢,并且一直持續。這時你需要檢查一下機器的網卡流量,是否存在網卡流量被跑滿的情況。

網卡負載過高,在網絡層和TCP層就會出現數據發送延遲、數據丟包等情況。Redis的高性能除了內存之外,就在于網絡IO,請求量突增會導致網卡負載變高。

如果出現這種情況,你需要排查這個機器上的哪個Redis實例的流量過大占滿了網絡帶寬,然后確認流量突增是否屬于業務正常情況,如果屬于那就需要及時擴容或遷移實例,避免這個機器的其他實例受到影響。

運維層面,我們需要對機器的各項指標增加監控,包括網絡流量,在達到閾值時提前報警,及時與業務確認并擴容。

總結

 

以上我們總結了Redis中常見的可能導致延遲增大甚至阻塞的場景,這其中既涉及到了業務的使用問題,也涉及到Redis的運維問題。

可見,要想保證Redis高性能的運行,其中涉及到CPU、內存、網絡,甚至磁盤的方方面面,其中還包括操作系統的相關特性的使用。

作為開發人員,我們需要了解Redis的運行機制,例如各個命令的執行時間復雜度、數據過期策略、數據淘汰策略等,使用合理的命令,并結合業務場景進行優化。

作為DBA運維人員,需要了解數據持久化、操作系統fork原理、Swap機制等,并對Redis的容量進行合理規劃,預留足夠的機器資源,對機器做好完善的監控,才能保證Redis的穩定運行。

原文地址:https://mp.weixin.qq.com/s?__biz=MzA4Nzg5Nzc5OA==&mid=2651697191&idx=1&sn=cc21b3c65065464bbc820d3a1776249f&chksm=8bcb738ebcbcfa98d990984554af69b58283f819f56865d0ab28300ce5f6729a0fae921fa05c&mpshare=1&

延伸 · 閱讀

精彩推薦
  • RedisRedis的配置、啟動、操作和關閉方法

    Redis的配置、啟動、操作和關閉方法

    今天小編就為大家分享一篇Redis的配置、啟動、操作和關閉方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧 ...

    大道化簡5312019-11-14
  • Redisredis實現排行榜功能

    redis實現排行榜功能

    排行榜在很多地方都能使用到,redis的zset可以很方便地用來實現排行榜功能,本文就來簡單的介紹一下如何使用,具有一定的參考價值,感興趣的小伙伴們...

    乘月歸5022021-08-05
  • Redisredis中如何使用lua腳本讓你的靈活性提高5個逼格詳解

    redis中如何使用lua腳本讓你的靈活性提高5個逼格詳解

    這篇文章主要給大家介紹了關于redis中如何使用lua腳本讓你的靈活性提高5個逼格的相關資料,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具...

    一線碼農5812019-11-18
  • RedisRedis 事務知識點相關總結

    Redis 事務知識點相關總結

    這篇文章主要介紹了Redis 事務相關總結,幫助大家更好的理解和學習使用Redis,感興趣的朋友可以了解下...

    AsiaYe8232021-07-28
  • RedisRedis如何實現數據庫讀寫分離詳解

    Redis如何實現數據庫讀寫分離詳解

    Redis的主從架構,能幫助我們實現讀多,寫少的情況,下面這篇文章主要給大家介紹了關于Redis如何實現數據庫讀寫分離的相關資料,文中通過示例代碼介紹...

    羅兵漂流記6092019-11-11
  • Redis詳解Redis復制原理

    詳解Redis復制原理

    與大多數db一樣,Redis也提供了復制機制,以滿足故障恢復和負載均衡等需求。復制也是Redis高可用的基礎,哨兵和集群都是建立在復制基礎上實現高可用的...

    李留廣10222021-08-09
  • RedisRedis全量復制與部分復制示例詳解

    Redis全量復制與部分復制示例詳解

    這篇文章主要給大家介紹了關于Redis全量復制與部分復制的相關資料,文中通過示例代碼介紹的非常詳細,對大家學習或者使用Redis爬蟲具有一定的參考學習...

    豆子先生5052019-11-27
  • Redisredis 交集、并集、差集的具體使用

    redis 交集、并集、差集的具體使用

    這篇文章主要介紹了redis 交集、并集、差集的具體使用,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友...

    xiaojin21cen10152021-07-27
主站蜘蛛池模板: 亚洲国产精品久久久久秋霞蜜臀 | 日本久久国产 | 日韩国产欧美精品 | 久久婷婷丁香 | av网站免费看 | 91免费视频网站 | 国产日韩精品久久 | 成人免费色 | 亚洲视频一区在线 | 国产黄色美女 | 精品免费视频 | 国产一区二区三区在线免费看 | 日韩中文字幕在线播放 | 欧美视频免费看 | 四虎永久免费 | 亚洲精品久久久久久久久久久 | 激情欧美一区二区三区中文字幕 | 欧美激情亚洲 | 精品亚洲永久免费精品 | 日韩中文字幕一区二区三区 | www.日韩视频 | 国产精品久久久久aaaa九色 | 国产美女自拍视频 | 亚洲国产成人精品久久久国产成人一区 | 欧美一级在线视频 | 亚洲国产精品激情在线观看 | 亚洲男人av| 午夜成人免费电影 | 日本一区二区免费在线播放 | 媚黑视频| 天堂中文 | www.国产精品 | 日韩专区中文字幕 | 视频一区二区三区免费观看 | 国产精品污www在线观看 | 成人av网页 | 少妇自摸视频 | 日本不卡免费新一二三区 | 亚洲a网站 | 久久99精品久久久久久园产越南 | 黄色网在线看 |