堆排序:利用大根堆
數(shù)組全部入堆,再出堆從后向前插入回?cái)?shù)組中,數(shù)組就從小到大有序了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
public class MaxHeap< T extends Comparable<? super T>> { private T[] data; private int size; private int capacity; public MaxHeap(int capacity) { this.data = (T[]) new Comparable[capacity + 1]; size = 0; this.capacity = capacity; } public int size() { return this.size; } public boolean isEmpty() { return size == 0; } public int getCapacity() { return this.capacity; } /** * @return 查看最大根(只看不刪, 與popMax對比) */ public T seekMax() { return data[1]; } public void swap(int i, int j) { if (i != j) { T temp = data[i]; data[i] = data[j]; data[j] = temp; } } public void insert(T item) { size++; data[size] = item; shiftUp(size); } /** * @return 彈出最大根(彈出意味著刪除, 與seekMax對比) */ public T popMax() { swap(1, size--); shiftDown(1); return data[size + 1]; } /** * @param child 孩子節(jié)點(diǎn)下角標(biāo)是child,父節(jié)點(diǎn)下角表是child/2 */ public void shiftUp(int child) { while (child > 1 && data[child].compareTo(data[child / 2]) > 0) { swap(child, child / 2); child = child / 2; } } /** * @param a data數(shù)組中某個元素的下角標(biāo) * @param b data數(shù)組中某個元素的下角標(biāo) * @return 哪個元素大就返回哪個的下角標(biāo) */ private int max(int a, int b) { if (data[a].compareTo(data[b]) < 0 ) {//如果data[b]大 return b;//返回b } else {//如果data[a]大 return a;//返回a } } /** * @param a data數(shù)組中某個元素的下角標(biāo) * @param b data數(shù)組中某個元素的下角標(biāo) * @param c data數(shù)組中某個元素的下角標(biāo) * @return 哪個元素大就返回哪個的下角標(biāo) */ private int max(int a, int b, int c) { int biggest = max (a, b); biggest = max (biggest, c); return biggest; } /** * @param father 父節(jié)點(diǎn)下角標(biāo)是father,左右兩個孩子節(jié)點(diǎn)的下角表分別是:father*2 和 father*2+1 */ public void shiftDown(int father) { while (true) { int lchild = father * 2;//左孩子 int rchild = father * 2 + 1;//右孩子 int newFather = father ;//newFather即將更新,父、左、右三個結(jié)點(diǎn)誰大,newFather就是誰的下角標(biāo) if (lchild > size) {//如果該father結(jié)點(diǎn)既沒有左孩子,也沒有右孩子 return; } else if (rchild > size) {//如果該father結(jié)點(diǎn)只有左孩子,沒有右孩子 newFather = max(father, lchild); } else {//如果該father結(jié)點(diǎn)既有左孩子,又有右孩子 newFather = max(father, lchild, rchild); } if (newFather == father) {//說明father比兩個子結(jié)點(diǎn)都要大,表名已經(jīng)是大根堆,不用繼續(xù)調(diào)整了 return; } else {//否則,還需要繼續(xù)調(diào)整堆,直到滿足大根堆條件為止 swap(father, newFather);//值進(jìn)行交換 father = newFather;//更新father的值,相當(dāng)于繼續(xù)調(diào)整shiftDown(newFather) } } } public static < T extends Comparable<? super T>> void sort(T[] arr) { int len = arr.length; //入堆 MaxHeap< T > maxHeap = new MaxHeap< T >(len); for (int i = 0; i < len ; i++) { maxHeap.insert(arr[i]); } //出堆 for (int i = len - 1; i >= 0; i--) { arr[i] = maxHeap.popMax(); } } public static void printArr(Object[] arr) { for (Object o : arr) { System.out.print(o); System.out.print("\t"); } System.out.println(); } public static void main(String args[]) { Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6}; printArr(arr);//3 5 1 7 2 9 8 0 4 6 sort(arr); printArr(arr);//0 1 2 3 4 5 6 7 8 9 } } |
堆排序:對數(shù)組進(jìn)行構(gòu)造堆(最大堆)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
public class MaxHeap< T extends Comparable<? super T>> { private T[] data; private int size; private int capacity; public MaxHeap(int capacity) { this.capacity = capacity; this.size = 0; this.data = (T[]) new Comparable[capacity + 1]; } public MaxHeap(T[] arr) {//heapify,數(shù)組建堆 capacity = arr.length; data = (T[]) new Comparable[capacity + 1]; System.arraycopy(arr, 0, data, 1, arr.length); size = arr.length; for (int i = size / 2; i >= 1; i--) { shiftDown(i); } } public int size() { return this.size; } public int getCapacity() { return this.capacity; } public boolean isEmpty() { return size == 0; } public T seekMax() { return data[1]; } public void swap(int i, int j) { if (i != j) { T temp = data[i]; data[i] = data[j]; data[j] = temp; } } public void insert(T item) { size++; data[size] = item; shiftUp(size); } public T popMax() { swap(1, size--); shiftDown(1); return data[size + 1]; } public void shiftUp(int child) { while (child > 1 && data[child].compareTo(data[child / 2]) > 0) { swap(child, child / 2); child /= 2; } } /** * @param a data數(shù)組中某個元素的下角標(biāo) * @param b data數(shù)組中某個元素的下角標(biāo) * @return 哪個元素大就返回哪個的下角標(biāo) */ private int max(int a, int b) { if (data[a].compareTo(data[b]) < 0 ) {//如果data[b]大 return b;//返回b } else {//如果data[a]大 return a;//返回a } } /** * @param a data數(shù)組中某個元素的下角標(biāo) * @param b data數(shù)組中某個元素的下角標(biāo) * @param c data數(shù)組中某個元素的下角標(biāo) * @return 哪個元素大就返回哪個的下角標(biāo) */ private int max(int a, int b, int c) { int biggest = max (a, b); biggest = max (biggest, c); return biggest; } public void shiftDown(int father) { while (true) { int lchild = father * 2; int rchild = father * 2 + 1; int newFather = father ;//這里賦不賦值無所謂,如果把下面這個return改成break,那就必須賦值了 if (lchild > size) {//如果沒有左、右孩子 return; } else if (rchild > size) {//如果沒有右孩子 newFather = max(father, lchild); } else {//如果有左、右孩子 newFather = max(father, lchild, rchild); } if (newFather == father) {//如果原父結(jié)點(diǎn)就是三者最大,則不用繼續(xù)整理堆了 return; } else {//父節(jié)點(diǎn)不是最大,則把大的孩子交換上來,然后繼續(xù)往下堆調(diào)整,直到滿足大根堆為止 swap(newFather, father); father = newFather;//相當(dāng)于繼續(xù)shiftDown(newFather)。假如newFather原來是father的左孩子,那就相當(dāng)于shiftDown(2*father) } } } public static < T extends Comparable<? super T>> void sort(T[] arr) { int len = arr.length; MaxHeap< T > maxHeap = new MaxHeap<>(arr); for (int i = len - 1; i >= 0; i--) { arr[i] = maxHeap.popMax(); } } public static void printArr(Object[] arr) { for (Object o : arr) { System.out.print(o); System.out.print("\t"); } System.out.println(); } public static void main(String args[]) { Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6}; printArr(arr);//3 5 1 7 2 9 8 0 4 6 sort(arr); printArr(arr);//0 1 2 3 4 5 6 7 8 9 } } |
以上這篇堆排序?qū)嵗?Java數(shù)組實(shí)現(xiàn))就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持服務(wù)器之家。
原文鏈接:http://www.cnblogs.com/noKing/p/7955197.html